当前位置: X-MOL 学术J. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Activation Soil Moisture Accounting (ASMA) for Runoff Estimation using Soil Conservation Service Curve Number (SCS-CN) Method
Journal of Hydrology ( IF 5.9 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.jhydrol.2020.125114
S. Verma , P.K. Singh , S.K. Mishra , V.P. Singh , Vishal Singh , A. Singh

Abstract In this study, the concept of activation soil moisture (ASM) has been conceptualised by coupling the Soil Moisture Accounting (SMA) concept with the static infiltration component (Fc) for simulating rainfall-runoff process. The ASM has been defined as the height of soil moisture barrier (or the amount of soil moisture deficit), which must be fulfilled before runoff can start. Most of the SCS-CN inspired methods, including the original one do not consider ASM in their formulation to simulate rainfall-runoff process. To account for ASM, here, we develop an activation soil moisture accounting (ASMA) based method (ASMA-SCS-CN) by coupling the SMA concept of Michel-Vazken-Perrin (MVP) method with the static infiltration (Fc) based Mishra-Singh (MS) method, which presents a fuller picture of SMA system. The performance of the ASMA-SCS-CN method is compared with the original SCS-CN method, MS method and MVP method by applying a large dataset of 56,343 storm events from 164 small to large watersheds in the United States using goodness-of-fit statistics in terms of Nash-Sutcliffe efficiency (NSE), the root mean square error (RMSE), normalized RMSE (nRMSE), percent bias (PBIAS), mean absolute error (MAE), standard error (SE) and RMSE-observations standard deviation ratio (RSR). The ASMA-SCS-CN method has the highest median value of NSE (0.71; varying from 0.11 to 0.97) with inter-quartile range (IQR) as (0.62–0.80) followed by MVP with NSE (0.67; varying from 0.10 to 0.0.96) and IQR as (0.57–0.74), MS with NSE (0.61; varying from 0.02 to 0.97) and IQR range as (0.46–0.72), and SCS-CN with NSE (0.58; varying from 0,01 to 0.92) and IQR as (0.44–0.69). The ASMA-SCS-CN method is found to have lowest mean and median values of RMSE, nRMSE, MAE, SE and RSR than the MVP, MS and SCS-CN method. The PBIAS values of the ASMA-SCS-CN and MVP methods are lower than that of MS and SCS-CN method. In addition, the performance of all four methods is further evaluated based on the watershed characteristics such as landuse, soil type, drainage area, and mean rainfall and the results show that in all cases the ASMA-SCS-CN method performs much better than the rest of the methods. Overall, the improved performance of ASMA-SCS-CN can be attributed to the inclusion of SMA along with the static infiltration component for representing the complete picture of SMA system in modelling rainfall-runoff process.

中文翻译:

使用土壤保持服务曲线数 (SCS-CN) 方法进行径流估算的激活土壤水分核算 (ASMA)

摘要 在这项研究中,激活土壤水分 (ASM) 的概念通过将土壤水分核算 (SMA) 概念与静态入渗分量 (Fc) 耦合来概念化,以模拟降雨-径流过程。ASM 被定义为土壤水分屏障的高度(或土壤水分亏缺量),必须在径流开始之前满足。大多数受 SCS-CN 启发的方法,包括原始方法,在其模拟降雨径流过程的公式中都没有考虑 ASM。为了解释 ASM,在这里,我们通过将 Michel-Vazken-Perrin (MVP) 方法的 SMA 概念与基于 Mishra 的静态渗透 (Fc) 相结合,开发了一种基于激活土壤水分核算 (ASMA) 的方法 (ASMA-SCS-CN) -Singh (MS) 方法,它提供了 SMA 系统的更完整图片。通过使用拟合优度,将 ASMA-SCS-CN 方法的性能与原始 SCS-CN 方法、MS 方法和 MVP 方法的性能进行比较,该数据集包含来自美国 164 个小流域到大流域的 56,343 个风暴事件Nash-Sutcliffe 效率 (NSE)、均方根误差 (RMSE)、归一化 RMSE (nRMSE)、百分比偏差 (PBIAS)、平均绝对误差 (MAE)、标准误差 (SE) 和 RMSE 观测标准方面的统计数据偏差率 (RSR)。ASMA-SCS-CN 方法具有最高的 NSE 中值(0.71;从 0.11 到 0.97 变化),四分位距(IQR)为(0.62–0.80),其次是 MVP 和 NSE(0.67;从 0.10 到 0.0 变化) .96)和 IQR 为(0.57-0.74),MS 与 NSE(0.61;从 0.02 到 0.97 变化)和 IQR 范围为(0.46-0.72),以及 SCS-CN 与 NSE(0.58;从 0.01 变化到 0.92 ) 和 IQR 为 (0.44–0.69)。发现 ASMA-SCS-CN 方法的 RMSE、nRMSE、MAE、SE 和 RSR 的均值和中值低于 MVP、MS 和 SCS-CN 方法。ASMA-SCS-CN 和 MVP 方法的 PBIAS 值低于 MS 和 SCS-CN 方法的 PBIAS 值。此外,根据土地利用、土壤类型、流域面积和平均降雨量等流域特征进一步评估了所有四种方法的性能,结果表明,在所有情况下,ASMA-SCS-CN 方法的性能都远优于其余方法。总体而言,ASMA-SCS-CN 性能的提高可归因于包含 SMA 和静态渗透组件,用于在建模降雨径流过程中表示 SMA 系统的完整画面。MS 和 SCS-CN 方法。ASMA-SCS-CN 和 MVP 方法的 PBIAS 值低于 MS 和 SCS-CN 方法的 PBIAS 值。此外,根据土地利用、土壤类型、流域面积和平均降雨量等流域特征进一步评估了所有四种方法的性能,结果表明,在所有情况下,ASMA-SCS-CN 方法的性能都远优于其余方法。总体而言,ASMA-SCS-CN 性能的提高可归因于包含 SMA 和静态渗透组件,用于在建模降雨径流过程中表示 SMA 系统的完整画面。MS 和 SCS-CN 方法。ASMA-SCS-CN 和 MVP 方法的 PBIAS 值低于 MS 和 SCS-CN 方法的 PBIAS 值。此外,根据土地利用、土壤类型、流域面积和平均降雨量等流域特征进一步评估了所有四种方法的性能,结果表明,在所有情况下,ASMA-SCS-CN 方法的性能都远优于其余方法。总体而言,ASMA-SCS-CN 性能的提高可归因于包含 SMA 和静态渗透组件,用于在建模降雨径流过程中表示 SMA 系统的完整画面。根据土地利用、土壤类型、流域面积和平均降雨量等流域特征进一步评估了所有四种方法的性能,结果表明,在所有情况下,ASMA-SCS-CN 方法的性能都比其他方法要好得多。方法。总体而言,ASMA-SCS-CN 性能的提高可归因于包含 SMA 和静态渗透组件,用于在建模降雨径流过程中表示 SMA 系统的完整画面。根据土地利用、土壤类型、流域面积和平均降雨量等流域特征进一步评估了所有四种方法的性能,结果表明,在所有情况下,ASMA-SCS-CN 方法的性能都比其他方法要好得多。方法。总的来说,ASMA-SCS-CN 性能的提高可归因于包含 SMA 和静态渗透组件,用于表示 SMA 系统在模拟降雨径流过程中的完整画面。
更新日期:2020-10-01
down
wechat
bug