当前位置: X-MOL 学术Geol. Ore Deposits › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mineral System of the Streltsovka Caldera Uranium Deposits (East Transbaikalia)
Geology of Ore Deposits ( IF 0.8 ) Pub Date : 2020-03-31 , DOI: 10.1134/s1075701520010055
A. A. Pek , V. I. Malkovsky , V. A. Petrov

Abstract—Various hypotheses, including alternative ones, have been put forward in the literature about the sources of ore substance and ore-forming fluids in the deposits of the Streltsovka ore field, which hosts the world’s largest uranium reserves, in excess of 250 000 t U: (1) uranium transport by ascending flow of ore-forming fluids that have separated from a deep subcrustal or intracrustal uranium-bearing felsic magma chamber and (2) uranium mobilization from uranium-bearing rocks of the volcano-tectonic structure of the Streltsovka caldera via postvolcanic thermoconvective circulation of the ore-forming fluids. For both hypotheses, the authors previously developed computer models of the paleohydronamic formation conditions of the largest in the ore field Antei–Streltsovka deposit, which presumed different uranium transport mechanisms with forced and free thermal convection of fluids, respectively. Both models yielded calculation results consistent with data on the reserves and formation temperatures of the Antei–Streltsovka ores. However, since the computer models are a simplified image of ore-forming systems, such agreement between the modeling results and a natural prototype only indicate the possibility of the proposed hypotheses on the formation conditions of the deposits. To solve the problem of their reality, additional information is necessary. Therefore, the authors of this paper have attempted a comparative analysis of the proposed alternative interpretations of the formation of the Antei–Streltsovka deposit using a methodology elaborated within the mineral systems concept. The results of our analysis substantiate the idea of successive forms of uranium transport by magmatic melt and ore-forming fluid to the mineral system of the Streltsovka ore field. The deep magmatic source was a feeder chamber for uranium transport by magmatic melts to the upper horizons of the crust with the formation of uranium-bearing rocks of the subvolcanic chamber and volcanic eruptions of the Streltsovka caldera. After uranium transport via magmatic melts, its subsequent redistribution occurred in the paleohydrothermal system with free thermal convection of fluids in the residual temperature field of the Streltsovka subvolcanic chamber. In this case, in the thermoconvective fluid circulation loop, conjugate processes of uranium mobilization could have taken place: (1) from the consolidated subvolcanic chamber, (2) from granitoid rocks of the caldera’s basement, and (3) from igneous felsic rocks in the caldera’s volcano-sedimentary cover. The coparticipation of these three potentially highly productive uranium sources in the ore mineralization process explains the origin of the unique uranium ore reserves of the Streltsovka ore field deposits.

中文翻译:

Streltsovka火山口铀矿床的矿物系统(东贝贝卡利亚)

摘要-关于Streltsovka矿田(拥有世界上最大的铀储量)超过25万吨U的矿床中的矿物质和成矿流体的来源,文献中提出了各种假说,包括其他假说。 :(1)通过从深层的地壳下或壳内的长铀岩浆岩浆室中分离出来的成矿流体的流动来进行铀运输,以及(2)从Streltsovka火山口构造的火山岩构造的含铀岩石中动员铀通过成矿流体的火山后热对流循环。对于这两种假设,作者先前都开发了Antei–Streltsovka矿床中最大的古水力学形成条件的计算机模型,分别假设了不同的铀输运机理,分别是流体的强迫和自由热对流。两种模型的计算结果均与安特伊-斯特列佐夫卡矿的储量和地层温度数据一致。但是,由于计算机模型是成矿系统的简化图,因此建模结果与自然原型之间的这种一致性仅表明提出的关于矿床形成条件的假设的可能性。解决他们现实的问题,则需要其他信息。因此,本文的作者已尝试使用矿物系统概念中阐述的方法,对拟议的安泰–斯特列佐夫卡矿床形成的替代解释进行比较分析。我们的分析结果证实了通过岩浆熔体和成矿流体将铀连续运入Streltsovka矿田的矿物系统的想法。深部岩浆源是通过岩浆熔体将铀运到地壳上层的馈线室,形成了次火山室的含铀岩石和斯特雷尔佐夫卡火山口的火山喷发。通过岩浆熔体运输铀之后,其随后的重新分布发生在古水热系统中,Streltsovka次火山室的残余温度场中的流体自由热对流。在这种情况下,在热对流流体循环回路中,可能会发生铀动员的共轭过程:(1)来自固结的次火山室,(2)来自破火山口地下室的花岗岩岩石,和(3)来自火成岩的长英质岩石。破火山口的火山沉积层。这三种潜在的高产铀源在矿石成矿过程中的共同参与解释了Streltsovka矿床矿床独特的铀矿储量的起源。铀动员的共轭过程可能是这样的:(1)来自固结的次火山室,(2)来自破火山口地下室的花岗岩岩石,和(3)来自破火山口的火山沉积盖层中的火成岩长英质岩石。这三种潜在的高产铀源在矿石成矿过程中的共同参与解释了Streltsovka矿床矿床独特的铀矿储量的起源。铀动员的共轭过程可能是这样的:(1)来自固结的次火山室,(2)来自破火山口地下室的花岗岩岩石,和(3)来自破火山口的火山沉积盖层中的火成岩长英质岩石。这三种潜在的高产铀源在矿石成矿过程中的共同参与解释了Streltsovka矿床矿床独特的铀矿储量的起源。
更新日期:2020-03-31
down
wechat
bug