当前位置: X-MOL 学术Netw. Spat. Econ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Origin-Destination Demand Reconstruction Using Observed Travel Time under Congested Network
Networks and Spatial Economics ( IF 1.6 ) Pub Date : 2020-03-31 , DOI: 10.1007/s11067-020-09496-4
Chao Sun , Yulin Chang , Xin Luan , Qiang Tu , Wenyun Tang

Two bi-level models to reconstruct origin-destination (O-D) demand under congested network are explored in terms of the observed link and route travel times, where one model inputs the known trajectories of observed route travel times and the other model uses both known and unknown trajectories of observed route travel times. The proposed models leverage both the link and route traffic information to determine the network O-D demand that minimizes the distances between the observed and estimated traffic information (O-D, link and route travel times) in the upper-level, and optimize the stochastic user equilibrium (SUE) in the lower-level. Meanwhile, the observed information of travel time can capture the relationships between traffic flow and travel cost/time in congested network. The K-means (hard assignment) and Gaussian mixture model (GMM, soft assignment) clustering methods are presented to identify the trajectories of observed route travel times. An iterative solution algorithm is proposed to solve the built O-D reconstruction models, where the method of gradient descent, the method of successive average and Expectation-Maximization (EM) algorithm are used to solve the upper-level model, lower level model, and GMM, respectively. Results from numerical experiments demonstrate the superiority of the travel time based model over the traditional flow based method in congested traffic network, and also suggest that using both the route and link information outperforms only using link information in the reconstruction of O-D demand.

中文翻译:

拥塞网络下基于观测旅行时间的原点目的地需求重构

根据观察到的链路和路线旅行时间,探索了两个双层模型来重建拥塞网络下的起点-目的地(OD)需求,其中一个模型输入了观察到的路线旅行时间的已知轨迹,而另一个模型同时使用了已知和已知的路线。观察到的路线旅行时间的未知轨迹。提出的模型利用链路和路由流量信息来确定网络OD需求,该需求将上层观察和估计的流量信息(OD,链路和路由旅行时间)之间的距离最小化,并优化随机用户平衡( SUE)。同时,所观察到的旅行时间信息可以捕获拥塞网络中交通流量与旅行成本/时间之间的关系。K均值(硬分配)和高斯混合模型(GMM,提出了一种软分配)聚类方法,以识别观察到的路线旅行时间的轨迹。提出了一种迭代求解算法来求解所建立的OD重建模型,该算法采用梯度下降法,逐次平均法和期望最大化算法求解上层模型,下层模型和GMM模型。 , 分别。数值实验的结果表明,在拥挤的交通网络中,基于旅行时间的模型优于传统的基于流量的方法,并且还建议在重构OD需求时使用路线和链接信息的效果均优于仅使用链接信息的效果。提出了一种迭代求解算法来求解所建立的OD重建模型,该算法采用梯度下降法,逐次平均法和期望最大化算法求解上层模型,下层模型和GMM模型。 , 分别。数值实验的结果表明,在拥挤的交通网络中,基于旅行时间的模型优于传统的基于流量的方法,并且还建议在OD需求重建中使用路线和链接信息的效果均优于仅使用链接信息的效果。提出了一种迭代求解算法来求解所建立的OD重建模型,该算法采用梯度下降法,逐次平均法和期望最大化算法求解上层模型,下层模型和GMM模型。 , 分别。数值实验的结果表明,在拥挤的交通网络中,基于旅行时间的模型优于传统的基于流量的方法,并且还建议在OD需求重建中使用路线和链接信息的效果均优于仅使用链接信息的效果。
更新日期:2020-03-31
down
wechat
bug