当前位置: X-MOL 学术Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium ion conducting biopolymer membrane based on K-carrageenan with LiNO 3
Ionics ( IF 2.4 ) Pub Date : 2020-06-02 , DOI: 10.1007/s11581-020-03604-7
I. Arockia Mary , S. Selvanayagam , S. Selvasekarapandian , R. Chitra , M. V. Leena Chandra , T. Ponraj

Energy crisis and environmental pollution are the major problems faced by all the people at present time. It is time to switch over to biopolymer electrolyte-based batteries instead of synthetic due to its high cost and not being environmentally green. Biopolymer membranes have been prepared using 1 g K-carrageenan with different molar mass percentages of LiNO3 by solution casting technique using double-distilled water as a solvent. Prepared biopolymer electrolyte membranes are characterized by XRD, FTIR, DSC, and AC impedance techniques. XRD confirms the amorphous nature of the biopolymer membranes. FTIR reveals the complexation formed between 1 g K-carrageenan and LiNO3. It has been found from DSC analysis that glass transition temperature of the biopolymer membrane 1 g K-carrageenan with LiNO3 decreases due to the addition of salt compared to the pure biopolymer 1 g K-carrageenan. Biopolymer membrane 1 g K-carrageenan with 0.65 wt% of LiNO3 has got the highest ionic conductivity of 1.89 × 10−3 S cm−1. Transference number analysis has been done by Wagner’s polarization method and Bruce and Vincent method. Electrochemical stability has been studied by linear sweep voltammetry. The highest conducting biopolymer membrane (1 g K-carrageenan with 0.65 wt% of LiNO3) is electrochemically stable up to 3.2 V. Lithium ion conducting battery has been constructed using the highest conducting biopolymer membrane and its performance has been analyzed.

中文翻译:

基于LiNO 3的K-角叉菜胶的锂离子导电生物聚合物膜

能源危机和环境污染是当今全人类面临的主要问题。由于成本高且不环保,是时候改用生物聚合物电解质电池了,而不是合成电池。已通过使用双蒸馏水作为溶剂的溶液流延技术,使用具有不同摩尔质量百分比的LiNO 3的1g K-角叉菜胶制备了生物聚合物膜。制备的生物聚合物电解质膜通过XRD,FTIR,DSC和AC阻抗技术进行表征。XRD证实了生物聚合物膜的无定形性质。FTIR显示1 g K-角叉菜胶与LiNO 3之间形成络合物。从DSC分析已经发现,与纯生物聚合物1g K-角叉菜胶相比,由于添加了盐,具有LiNO 3的生物聚合物膜1g K-角叉菜胶的玻璃化转变温度降低。具有0.65wt%的LiNO 3的生物聚合物膜1g K-角叉菜胶具有1.89×10 -3 S cm -1的最高离子电导率。转移数分析采用Wagner极化法和Bruce and Vincent法进行。通过线性扫描伏安法研究了电化学稳定性。导电性最高的生物聚合物膜(1 g角叉菜胶与0.65 wt%的LiNO 3)在高达3.2 V的电压下具有电化学稳定性。锂离子导电电池已使用导电性最高的生物聚合物膜制成,并对其性能进行了分析。
更新日期:2020-06-02
down
wechat
bug