当前位置: X-MOL 学术Swiss J. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The relation between peak metamorphic temperatures and subsequent cooling during continent–continent collision (western Central Alps, Switzerland)
Swiss Journal of Geosciences ( IF 1.8 ) Pub Date : 2020-04-06 , DOI: 10.1186/s00015-020-00356-4
Alfons Berger , Martin Engi , Silja Erne-Schmid , Christoph Glotzbach , Cornelia Spiegel , Rick de Goede , Marco Herwegh

The maximum temperature (Tmax) and subsequent exhumation reflect the relations between advective and conductive heat transport, which in turn depend on the tectonic evolution. To unravel these relations in an orogen, precise Tmax data need to be combined with relative time information for the displacements of adjacent units. We present new Tmax data based on Raman spectroscopy of carbonaceous material (RSCM) and zircon fission track (FT) data, which are combined with previous data and then discussed jointly. We follow this approach in the Central Alps at the western edge of the Lepontine dome. Our analysis indicates two main tectono-metamorphic domains in this area: domain A comprises the Lower Helvetic units involving the Aar Massif; domain B is situated south of the Helvetic main thrust, in the footwall of the Simplon line. In domain A, thrusted Helvetic units were overprinted mainly by reverse faulting in the Aar Massif. The thermal evolution is related to the inversion of the former Doldenhorn basin. Tectonic transport during inversion brought into contact units with substantially different Tmax. Temperature gradients were then reduced by conductive heat transfer, but thermal overprinting during cooling involved subsequent vertical movements as well. Zircon FT data yield apparent ages between 12 and 18 Ma in the external part, but 8–9 Ma in the internal part of the Aar Massif. The youngest ages are taken as the cooling at a given temperature, whereas the other data are discussed as being only partially resetted along a temperature path in the partial annealing zone of the zircon FT. When combined with age data for Tmax and apatite FT data from the literature, the youngest group exhibits exhumation rates between 0.5 and 1.2 km/Ma in the time range between 20 Ma and today. In all of domain B, Tmax was significantly higher than in domain A. In domain B the estimated rates of exhumation are 0.8–1.0 km/Ma for the post-20 Ma time interval. Despite of different temperature evolution, the exhumation rates are similar in both domains. The study shows the necessity to combine detailed tectonic data to interpret the T–t evolution of such an area.

中文翻译:

大陆-大陆碰撞期间最高变质温度与随后的降温之间的关系(瑞士中部阿尔卑斯山西部)

最高温度(Tmax)和随后的发掘反应反映了对流和传导热传递之间的关系,而热传递又取决于构造演化。为了揭示造山带中的这些关系,需要将精确的Tmax数据与相对时间信息结合起来,以用于相邻单元的位移。我们提出了基于碳质材料的拉曼光谱(RSCM)和锆石裂变径迹(FT)数据的新Tmax数据,这些数据与以前的数据结合在一起,然后进行了讨论。我们在Lepontine圆顶西边缘的中央阿尔卑斯山采用这种方法。我们的分析表明,该区域有两个主要的构造变质域:域A包括涉及Aar地块的下层Helvetic单元;B区位于Simplon线后壁的Helvetic主推力以南。在域A中,在Aar断层中,逆冲断层主要是对逆冲的Helvetic单元进行套印。热演化与前多尔登霍恩盆地的倒转有关。反演过程中的构造运移使接触单元的Tmax大大不同。然后通过传导热传递降低温度梯度,但是冷却过程中的热套印也涉及随后的垂直运动。Zircon FT数据在Aar地块的外部产生的表观年龄介于12至18 Ma之间,而内部则为8–9 Ma。最年轻的年龄被视为在给定温度下的冷却,而其他数据被讨论为仅在锆石FT的部分退火区中沿着温度路径被部分重置。当结合文献中的Tmax年龄数据和磷灰石FT数据时,最年轻的群体在20 Ma到今天的时间范围内,发掘出尸体的速率在0.5至1.2 km / Ma之间。在所有域B中,Tmax均显着高于域A。在域B中,在20 Ma后的时间间隔内,估计的尸体发掘速率为0.8-1.0 km / Ma。尽管温度变化不同,但在两个域中的发掘速率相似。研究表明,有必要结合详细的构造数据来解释该地区的TT演化。
更新日期:2020-04-06
down
wechat
bug