当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable spin-glass optical simulator
arXiv - CS - Emerging Technologies Pub Date : 2020-06-01 , DOI: arxiv-2006.00828
Davide Pierangeli, Mushegh Rafayelyan, Claudio Conti, and Sylvain Gigan

Many developments in science and engineering depend on tackling complex optimizations on large scales. The challenge motivates intense search for specific computing hardware that takes advantage from quantum features [1, 2], stochastic elements [3], nonlinear dissipative dynamics [4-8], in-memory operations [9, 10], or photonics [11-14]. A paradigmatic optimization problem is finding low-energy states in classical spin systems with fully-random interactions [15-18]. To date no alternative computing platform can address such spin-glass problems on a large scale. Here we propose and realize an optical scalable spin-glass simulator based on spatial light modulation and multiple light scattering. By tailoring optical transmission through a disordered medium, we optically accelerate the computation of the ground state of large spin networks with all-to-all random couplings. Scaling of the operation time with the problem size demonstrates optical advantage over conventional computing. Our results provide a general route towards large-scale computing that exploits speed, parallelism and coherence of light [19-23].

中文翻译:

可扩展的旋转玻璃光学模拟器

科学和工程的许多发展都依赖于大规模处理复杂的优化。挑战激发了对利用量子特征 [1, 2]、随机元素 [3]、非线性耗散动力学 [4-8]、内存操作 [9, 10] 或光子学 [11] 的特定计算硬件的强烈搜索-14]。一个典型的优化问题是在具有完全随机相互作用的经典自旋系统中寻找低能态 [15-18]。迄今为止,没有替代计算平台可以大规模解决此类自旋玻璃问题。在这里,我们提出并实现了一种基于空间光调制和多重光散射的光学可扩展自旋玻璃模拟器。通过调整通过无序介质的光传输,我们在光学上加速了具有全对全随机耦合的大型自旋网络的基态计算。用问题大小缩放操作时间证明了优于传统计算的光学优势。我们的结果为利用光的速度、并行性和相干性进行大规模计算提供了一般途径 [19-23]。
更新日期:2020-06-02
down
wechat
bug