当前位置: X-MOL 学术Holzforschung › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating tool engagement in groundwood pulping: finite element modelling and in-situ observations at the microscale
Holzforschung ( IF 2.2 ) Pub Date : 2020-05-26 , DOI: 10.1515/hf-2019-0133
Jenny Carlsson 1 , Magnus Heldin 1 , Per Isaksson 1 , Urban Wiklund 1
Affiliation  

Abstract With industrial groundwood pulping processes relying on carefully designed grit surfaces being developed for commercial use, it is increasingly important to understand the mechanisms occurring in the contact between wood and tool. We present a methodology to experimentally and numerically analyse the effect of different tool geometries on the groundwood pulping defibration process. Using a combination of high-resolution experimental and numerical methods, including finite element (FE) models, digital volume correlation (DVC) of synchrotron radiation-based X-ray computed tomography (CT) of initial grinding and lab-scale grinding experiments, this paper aims to study such mechanisms. Three different asperity geometries were studied in FE simulations and in grinding of wood from Norway spruce. We found a good correlation between strains obtained from FE models and strains calculated using DVC from stacks of CT images of initial grinding. We also correlate the strains obtained from numerical models to the integrity of the separated fibres in lab-scale grinding experiments. In conclusion, we found that, by modifying the asperity geometries, it is, to some extent, possible to control the underlying mechanisms, enabling development of better tools in terms of efficiency, quality of the fibres and stability of the groundwood pulping process.

中文翻译:

研究磨木浆中的工具参与:有限元建模和微观尺度的原位观察

摘要 随着工业磨木浆制浆工艺依赖于精心设计的砂砾表面被开发用于商业用途,了解木材和工具之间接触的机制变得越来越重要。我们提出了一种通过实验和数值分析不同工具几何形状对磨木浆解纤过程的影响的方法。使用高分辨率实验和数值方法的组合,包括有限元 (FE) 模型、基于同步辐射的 X 射线计算机断层扫描 (CT) 的初始研磨和实验室规模研磨实验的数字体积相关 (DVC),这本文旨在研究这种机制。在有限元模拟和挪威云杉木材的研磨中研究了三种不同的粗糙度几何形状。我们发现从 FE 模型获得的应变与使用 DVC 从初始磨削的 CT 图像堆栈计算的应变之间存在良好的相关性。我们还将从数值模型中获得的应变与实验室规模研磨实验中分离纤维的完整性相关联。总之,我们发现,通过修改粗糙几何形状,在一定程度上可以控制潜在机制,从而能够开发出在效率、纤维质量和磨木制浆过程稳定性方面更好的工具。
更新日期:2020-05-26
down
wechat
bug