当前位置: X-MOL 学术Rev. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Potential of metal monoliths with grown carbon nanomaterials as catalyst support in intensified steam reformer: a perspective
Reviews in Chemical Engineering ( IF 4.9 ) Pub Date : 2020-05-26 , DOI: 10.1515/revce-2018-0007
Luqmanulhakim Baharudin 1 , Alex Chi-Kin Yip 1 , Vladimir Golovko 2 , Matthew James Watson 1
Affiliation  

Abstract A monolithic catalytic support is potentially a thermally effective system for application in an intensified steam reforming process. In contrast to ceramic analogues, metal monoliths exhibit better mechanical strength, thermal conductivity and a thermal expansion coefficient equivalent to that of the reformer tube. A layer of carbon nanomaterials grown on the metal monolith’s surface can act as a textural promoter offering sufficient surface area for hosting homogeneously dispersed catalytically active metal particles. Carbon nanomaterials possess good thermal conductivities and mechanical properties. The future potential of this system in steam reforming is envisaged based on hypothetical speculation supported by fundamental carbon studies from as early as the 1970s, and sufficient literature evidence from relatively recent research on the use of monoliths and carbon in catalysis. Thermodynamics and active interaction between metal particle surface and carbon-containing gas have resulted in coke deposition on the nickel-based catalysts in steam reforming. The coke is removable through gasification by increasing the steam-to-carbon ratio to above stoichiometric but risks a parallel gasification of the carbon nanomaterials textural promoter, leading to nickel particle sintering. We present our perspective based on literature in which, under the same coke gasification conditions, the highly crystallised carbon nanomaterials maintain high chemical and thermal stability.

中文翻译:

具有生长碳纳米材料的金属整料作为强化蒸汽重整器中催化剂载体的潜力:一个观点

摘要 整体式催化载体是一种潜在的热效率系统,可用于强化蒸汽重整过程。与陶瓷类似物相比,金属整料表现出更好的机械强度、导热性和与转化炉管相当的热膨胀系数。在金属单块表面上生长的一层碳纳米材料可以作为结构促进剂,提供足够的表面积以容纳均匀分散的催化活性金属颗粒。碳纳米材料具有良好的导热性和机械性能。该系统在蒸汽重整方面的未来潜力是基于早在 1970 年代就得到基础碳研究支持的假设推测,以及来自相对较新的关于在催化中使用整料和碳的研究的足够文献证据。金属颗粒表面与含碳气体之间的热力学和活性相互作用导致在蒸汽重整中镍基催化剂上的焦炭沉积。通过将蒸汽与碳的比率增加到化学计量以上,可以通过气化去除焦炭,但存在碳纳米材料结构促进剂平行气化的风险,从而导致镍颗粒烧结。我们根据文献提出我们的观点,其中在相同的焦炭气化条件下,高度结晶的碳纳米材料保持高度的化学和热稳定性。金属颗粒表面与含碳气体之间的热力学和活性相互作用导致在蒸汽重整中镍基催化剂上的焦炭沉积。通过将蒸汽与碳的比率增加到化学计量以上,可以通过气化去除焦炭,但存在碳纳米材料结构促进剂平行气化的风险,从而导致镍颗粒烧结。我们根据文献提出我们的观点,其中在相同的焦炭气化条件下,高度结晶的碳纳米材料保持高度的化学和热稳定性。金属颗粒表面与含碳气体之间的热力学和活性相互作用导致在蒸汽重整中镍基催化剂上的焦炭沉积。通过将蒸汽与碳的比率增加到化学计量以上,可以通过气化去除焦炭,但存在碳纳米材料结构促进剂平行气化的风险,从而导致镍颗粒烧结。我们根据文献提出我们的观点,其中在相同的焦炭气化条件下,高度结晶的碳纳米材料保持高度的化学和热稳定性。导致镍颗粒烧结。我们根据文献提出我们的观点,其中在相同的焦炭气化条件下,高度结晶的碳纳米材料保持高度的化学和热稳定性。导致镍颗粒烧结。我们根据文献提出我们的观点,其中在相同的焦炭气化条件下,高度结晶的碳纳米材料保持高度的化学和热稳定性。
更新日期:2020-05-26
down
wechat
bug