当前位置: X-MOL 学术Pure Appl. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering the ABIO-BIO interface of neurostimulation electrodes using polypyrrole and bioactive hydrogels
Pure and Applied Chemistry ( IF 1.8 ) Pub Date : 2020-06-25 , DOI: 10.1515/pac-2019-1107
Ankita Bhat 1 , Alexa R. Graham 1 , Hemang Trivedi 2 , Matthew K. Hogan 2 , Philip J. Horner 2 , Anthony Guiseppi-Elie 1, 2, 3, 4
Affiliation  

Abstract Following spinal cord injury, the use of electrodes for neurostimulation in animal models has been shown to stimulate muscle movement, however, the efficacy of such treatment is impaired by increased interfacial impedance caused by fibrous encapsulation of the electrode. Sputter-deposited gold-on-polyimide electrodes were modified by potentiostatic electrodeposition of poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate): sulfopropyl methacrylate [P(Py-co-PyBA-conj-AEMA):SPMA] to various charge densities (0–100 mC/cm2) to address interfacial impedance and coated with a phosphoryl choline containing bioactive hydrogel to address biocompatibility at the ABIO-BIO interface. Electrodes were characterized with scanning electron microscopy (surface morphology), multiple-scan rate cyclic voltammetry (peak current and electroactive area), and electrochemical impedance spectroscopy (charge transfer resistance and membrane resistance). SEM analysis and electroactive area calculations identified films fabricated with a charge density of 50 mC/cm2 as well suited for neurostimulation electrodes. Charge transfer resistance demonstrated a strong inverse correlation (−0.83) with charge density of electrodeposition. On average, the addition of polypyrrole and hydrogel to neurostimulation electrodes decreased charge transfer resistance by 82 %. These results support the use of interfacial engineering techniques to mitigate high interfacial impedance and combat the foreign body response towards epidurally implanted neurostimulation electrodes.

中文翻译:

使用聚吡咯和生物活性水凝胶设计神经刺激电极的 ABIO-BIO 界面

摘要 脊髓损伤后,在动物模型中使用用于神经刺激的电极已被证明可以刺激肌肉运动,但是,这种治疗的功效会因电极的纤维包封引起的界面阻抗增加而受损。通过聚(吡咯-co-3-吡咯基丁酸酯-conj-氨基乙基甲基丙烯酸酯):甲基丙烯酸磺丙酯[P(Py-co-PyBA-conj-AEMA):SPMA]的恒电位电沉积将溅射沉积的聚酰亚胺电极改性为各种电荷密度 (0–100 mC/cm2) 以解决界面阻抗问题,并涂有含磷酰胆碱的生物活性水凝胶,以解决 ABIO-BIO 界面的生物相容性。用扫描电子显微镜(表面形态)表征电极,多扫描速率循环伏安法(峰值电流和电活性面积)和电化学阻抗谱(电荷转移电阻和膜电阻)。SEM 分析和电活性面积计算确定了以 50 mC/cm2 的电荷密度制造的薄膜,并且非常适合神经刺激电极。电荷转移电阻与电沉积的电荷密度呈强负相关(-0.83)。平均而言,向神经刺激电极添加聚吡咯和水凝胶可将电荷转移电阻降低 82%。这些结果支持使用界面工程技术来减轻高界面阻抗并对抗对硬膜外植入神经刺激电极的异物反应。和电化学阻抗谱(电荷转移电阻和膜电阻)。SEM 分析和电活性面积计算确定了以 50 mC/cm2 的电荷密度制造的薄膜,并且非常适合神经刺激电极。电荷转移电阻与电沉积的电荷密度呈强负相关(-0.83)。平均而言,向神经刺激电极添加聚吡咯和水凝胶可将电荷转移电阻降低 82%。这些结果支持使用界面工程技术来减轻高界面阻抗并对抗对硬膜外植入神经刺激电极的异物反应。和电化学阻抗谱(电荷转移电阻和膜电阻)。SEM 分析和电活性面积计算确定了以 50 mC/cm2 的电荷密度制造的薄膜,并且非常适合神经刺激电极。电荷转移电阻与电沉积的电荷密度呈强负相关(-0.83)。平均而言,向神经刺激电极添加聚吡咯和水凝胶可将电荷转移电阻降低 82%。这些结果支持使用界面工程技术来减轻高界面阻抗并对抗对硬膜外植入神经刺激电极的异物反应。SEM 分析和电活性面积计算确定了以 50 mC/cm2 的电荷密度制造的薄膜,并且非常适合神经刺激电极。电荷转移电阻与电沉积的电荷密度呈强负相关(-0.83)。平均而言,向神经刺激电极添加聚吡咯和水凝胶可将电荷转移电阻降低 82%。这些结果支持使用界面工程技术来减轻高界面阻抗并对抗对硬膜外植入神经刺激电极的异物反应。SEM 分析和电活性面积计算确定了以 50 mC/cm2 的电荷密度制造的薄膜,并且非常适合神经刺激电极。电荷转移电阻与电沉积的电荷密度呈强负相关(-0.83)。平均而言,向神经刺激电极添加聚吡咯和水凝胶可将电荷转移电阻降低 82%。这些结果支持使用界面工程技术来减轻高界面阻抗并对抗对硬膜外植入神经刺激电极的异物反应。将聚吡咯和水凝胶添加到神经刺激电极后,电荷转移电阻降低了 82%。这些结果支持使用界面工程技术来减轻高界面阻抗并对抗对硬膜外植入神经刺激电极的异物反应。将聚吡咯和水凝胶添加到神经刺激电极后,电荷转移电阻降低了 82%。这些结果支持使用界面工程技术来减轻高界面阻抗并对抗对硬膜外植入神经刺激电极的异物反应。
更新日期:2020-06-25
down
wechat
bug