当前位置: X-MOL 学术Nanotechnol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Review on modeling and application of chemical mechanical polishing
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2020-03-12 , DOI: 10.1515/ntrev-2020-0016
Gaoyang Zhao 1, 2, 3 , Zhen Wei 1, 2, 4 , Weilei Wang 1, 2 , Daohuan Feng 1, 2, 3 , Aoxue Xu 1, 2, 3 , Weili Liu 1, 2 , Zhitang Song 1, 2
Affiliation  

Abstract With the development of integrated circuit technology, especially after entering the sub-micron process, the reduction of critical dimensions and the realization of high-density devices, the flatness between integrated circuit material layers is becoming more and more critical. Because conventional mechanical polishing methods inevitably produce scratches of the same size as the device in metal or even dielectric layers, resulting in depth of field and focus problems in lithography. The first planarization technique to achieve application is spin on glass (SOG) technology. However, this technology will not only introduce new material layers, but will also fail to achieve the global flattening required by VLSI and ULSI technologies. Moreover, the process instability and uniformity during spin coating do not meet the high flatness requirements of the wafer surface. Also, while some techniques such as reverse etching and glass reflow can achieve submicron level regional planarization. After the critical dimension reaches 0.35 microns (sub-micron process), the above methods cannot meet the requirements of lithography and interconnect fabrication. In the 1980s, IBM first introduced the chemical mechanical polishing (CMP) technology used to manufacture precision optical instruments into its DRAM manufacturing [1]. With the development of technology nodes and critical dimensions, CMP technology has been widely used in the Front End Of Line (FEOL) and Back End Of Line (BEOL) processes [2]. Since the invention of chemical mechanical polishing, scientists have not stopped studying its internal mechanism. From the earliest Preston Formula (1927) to today’s wafer scale, chip scale, polishing pad contact, polishing pad - abrasive - wafer contact and material removal models, there are five different scale models from macro to the micro [3]. Many research methods, such as contact mechanics, multiphase flow kinetics, chemical reaction kinetics, molecular dynamics, etc., have been applied to explain the principles of chemical mechanical polishing to establish models. This paper mainly introduces and summarizes the different models of chemical mechanical polishing technology. The various application scenarios and advantages and dis-advantages of the model are discussed, and the development of modeling technology is introduced.

中文翻译:

化学机械抛光建模与应用综述

摘要 随着集成电路技术的发展,特别是进入亚微米工艺后,关键尺寸的减小和高密度器件的实现,集成电路材料层之间的平整度变得越来越关键。因为传统的机械抛光方法不可避免地会在金属甚至介电层中产生与器件相同大小的划痕,从而导致光刻中的景深和聚焦问题。实现应用的第一个平面化技术是旋涂玻璃 (SOG) 技术。然而,这种技术不仅会引入新的材料层,而且也无法实现超大规模集成电路和超大规模集成电路技术所需的全局扁平化。而且,旋涂时的工艺不稳定性和均匀性不能满足晶圆表面的高平整度要求。此外,虽然一些技术如反向蚀刻和玻璃回流可以实现亚微米级的区域平面化。在临界尺寸达到0.35微米(亚微米工艺)后,上述方法无法满足光刻和互连制造的要求。1980 年代,IBM 首次将用于制造精密光学仪器的化学机械抛光 (CMP) 技术引入其 DRAM 制造 [1]。随着技术节点和关键尺寸的发展,CMP技术已广泛应用于生产线前端(FEOL)和生产线后端(BEOL)工艺[2]。自化学机械抛光发明以来,科学家们一直没有停止研究其内部机制。从最早的普雷斯顿公式(1927)到今天的晶圆尺度、芯片尺度、抛光垫接触、抛光垫-磨料-晶圆接触和材料去除模型,从宏观到微观共有五种不同的尺度模型[3]。许多研究方法,如接触力学、多相流动力学、化学反应动力学、分子动力学等,已被应用于解释化学机械抛光的原理以建立模型。本文主要介绍和总结了化学机械抛光技术的不同模式。讨论了模型的各种应用场景和优缺点,介绍了建模技术的发展。从最早的普雷斯顿公式(1927)到今天的晶圆尺度、芯片尺度、抛光垫接触、抛光垫-磨料-晶圆接触和材料去除模型,从宏观到微观共有五种不同的尺度模型[3]。许多研究方法,如接触力学、多相流动力学、化学反应动力学、分子动力学等,已被应用于解释化学机械抛光的原理以建立模型。本文主要介绍和总结了化学机械抛光技术的不同模式。讨论了模型的各种应用场景和优缺点,介绍了建模技术的发展。从最早的普雷斯顿公式(1927)到今天的晶圆尺度、芯片尺度、抛光垫接触、抛光垫-磨料-晶圆接触和材料去除模型,从宏观到微观共有五种不同的尺度模型[3]。许多研究方法,如接触力学、多相流动力学、化学反应动力学、分子动力学等,已被应用于解释化学机械抛光的原理以建立模型。本文主要介绍和总结了化学机械抛光技术的不同模式。讨论了模型的各种应用场景和优缺点,介绍了建模技术的发展。从宏观到微观,有五种不同的比例模型 [3]。许多研究方法,如接触力学、多相流动力学、化学反应动力学、分子动力学等,已被应用于解释化学机械抛光的原理以建立模型。本文主要介绍和总结了化学机械抛光技术的不同模式。讨论了模型的各种应用场景和优缺点,介绍了建模技术的发展。从宏观到微观,有五种不同的比例模型 [3]。许多研究方法,如接触力学、多相流动力学、化学反应动力学、分子动力学等,已被应用于解释化学机械抛光的原理以建立模型。本文主要介绍和总结了化学机械抛光技术的不同模式。讨论了模型的各种应用场景和优缺点,介绍了建模技术的发展。本文主要介绍和总结了化学机械抛光技术的不同模式。讨论了模型的各种应用场景和优缺点,介绍了建模技术的发展。本文主要介绍和总结了化学机械抛光技术的不同模式。讨论了模型的各种应用场景和优缺点,介绍了建模技术的发展。
更新日期:2020-03-12
down
wechat
bug