当前位置: X-MOL 学术Int. J. Turbo Jet Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application and Design of Multi-Impingement Cooling Channel in Turbine Blade Trail Edge
International Journal of Turbo & Jet-Engines ( IF 0.7 ) Pub Date : 2020-08-27 , DOI: 10.1515/tjj-2017-0023
Longfei Wang 1 , Fengbo Wen 1 , Songtao Wang 1 , Xun Zhou 1 , Zhongqi Wang 1
Affiliation  

Abstract The numerical simulations are used to conduct the comparative study of pin-fins cooling channel and multi-impingement cooling channel on the heat transfer and flow, and to design the multi-impingement channel through the parameters of impinging distance and impingement-jet-plate thickness. The Reynolds number ranges from 1e4 to 6e4. The dimensionless impinging distance is 0.60, 1.68, 2.76, respectively, and the dimensionless impinging-jet-thickness is 0.5, 1.0, 1.5, respectively. The endwall surface, pin-fins surface, impinging-jet-plate surface are the three object surfaces to investigate the channel heat transfer performance. The heat transfer coefficient h $h$ and augmentation factor Nu/Nu0 $Nu/N{u_0}$ are selected to measure the surface heat transfer, and the friction coefficient f $f$ is chosen to evaluate the channel flow characteristics. The impinging-jet-plate surface owns higher heat transfer coefficient and larger area than pin-fins surface, which are the main reasons to improve the heat transfer performance of multi-impingement cooling channel. Reducing the impinging distance can improve the endwall surface heat transfer obviously and enhance impingement plate surface heat transfer to some extent, decreasing the thickness of impinging-jet-plate can significantly increase its own heat transfer coefficient, which both all increase the cooling air flow loss.

中文翻译:

多冲击冷却通道在涡轮叶片后缘的应用与设计

摘要 通过数值模拟对针翅式冷却通道和多冲击冷却通道的传热和流动进行了对比研究,并通过冲击距离和冲击射流板参数设计了多冲击通道。厚度。雷诺数的范围从 1e4 到 6e4。无量纲撞击距离分别为0.60、1.68、2.76,无量纲撞击射流厚度分别为0.5、1.0、1.5。端壁面、针翅面、冲击射流板面是研究通道传热性能的三个对象面。选择传热系数 h $h$ 和增强因子 Nu/Nu0 $Nu/N{u_0}$ 来测量表面传热,并选择摩擦系数 f$f$ 来评估通道流动特性。撞击射流板表面比针翅表面具有更高的传热系数和更大的面积,这是提高多撞击冷却通道传热性能的主要原因。减小撞击距离可以明显改善端壁面传热,并在一定程度上增强撞击板表面传热,减小撞击射流板的厚度可以显着增加其自身的传热系数,都增加了冷却气流的流动损失.
更新日期:2020-08-27
down
wechat
bug