当前位置: X-MOL 学术Int. J. Chem. React. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of Heat Transfer Efficiency of Improved Intermig Impellers in a Stirred Tank Equipped with Vertical Tubes
International Journal of Chemical Reactor Engineering ( IF 1.2 ) Pub Date : 2020-03-18 , DOI: 10.1515/ijcre-2019-0196
Leizhi Wang 1 , Yongjun Zhou 2 , Zhaobo Chen 1
Affiliation  

Abstract The heat transfer of a reactor with improved Intermig impellers was numerically investigated by the finite element method (FEM) simulation software Fluent (V.19). A turbulence model utilized the standard k-ε model, and the turbulent flows in two large vortexes between vertical tubes were collided to form a strong convection. The influence of heat and mass transfer developing from the impeller diameters, the distance between the two impellers (C1), the rotational speed and the installation height of the bottom impeller (C2) were studied. The reactor was equipped with special structure vertical tubes to increase the heat exchange areas. The rate of heat transfer, including criteria such as the convective heat transfer coefficient, the Nusselt number of outside vertical tubes, and the temperature boundary layer thickness, assured the accurate control of the heat exchange mixing state. The experimental testing platform was designed to validate the simulated results, which revealed the influence order of related factors. The Nusselt number Nu was affected by various related factors, resulting in the rotation and diameter of impellers extending far beyond the distance between the two impellers (C1) and the installation height of the impeller (C2). The average temperature boundary layer thicknesses of the symmetrical and middle sections were 3.24 mm and 3.48 mm, respectively. Adjusting the appropriate parameters can accurately control the heat exchange process in such a reactor, and the conclusions provide a significant reference for engineering applications.

中文翻译:

改进的 Intermig 叶轮在装有立管的搅拌罐中的传热效率研究

摘要 采用有限元法(FEM)模拟软件Fluent(V.19)对改进型Intermig叶轮反应器的传热进行了数值研究。湍流模型采用标准 k-ε 模型,垂直管之间的两个大涡流中的湍流碰撞形成强对流。研究了叶轮直径、两个叶轮之间的距离(C1)、转速和底部叶轮的安装高度(C2)对传热和传质的影响。反应器装有特殊结构的立管,以增加换热面积。传热速率,包括对流传热系数、外部垂直管的努塞尔数和温度边界层厚度等标准,保证了热交换混合状态的精确控制。设计实验测试平台对模拟结果进行验证,揭示相关因素的影响顺序。努塞尔数Nu受各种相关因素的影响,导致叶轮的转数和直径远远超出了两个叶轮之间的距离(C1)和叶轮的安装高度(C2)。对称截面和中间截面的平均温度边界层厚度分别为 3.24 mm 和 3.48 mm。调整合适的参数可以准确控制此类反应器中的热交换过程,该结论为工程应用提供了重要参考。设计实验测试平台对模拟结果进行验证,揭示相关因素的影响顺序。努塞尔数Nu受各种相关因素的影响,导致叶轮的转数和直径远远超出了两个叶轮之间的距离(C1)和叶轮的安装高度(C2)。对称截面和中间截面的平均温度边界层厚度分别为 3.24 mm 和 3.48 mm。调整合适的参数可以准确控制此类反应器中的热交换过程,该结论为工程应用提供了重要参考。设计实验测试平台对模拟结果进行验证,揭示相关因素的影响顺序。努塞尔数Nu受各种相关因素的影响,导致叶轮的转数和直径远远超出了两个叶轮之间的距离(C1)和叶轮的安装高度(C2)。对称截面和中间截面的平均温度边界层厚度分别为 3.24 mm 和 3.48 mm。调整合适的参数可以准确控制此类反应器中的热交换过程,该结论为工程应用提供了重要参考。导致叶轮的旋转和直径远远超出两个叶轮之间的距离(C1)和叶轮的安装高度(C2)。对称截面和中间截面的平均温度边界层厚度分别为 3.24 mm 和 3.48 mm。调整合适的参数可以准确控制此类反应器中的热交换过程,该结论为工程应用提供了重要参考。导致叶轮的旋转和直径远远超出两个叶轮之间的距离(C1)和叶轮的安装高度(C2)。对称截面和中间截面的平均温度边界层厚度分别为 3.24 mm 和 3.48 mm。调整合适的参数可以准确控制此类反应器的换热过程,该结论为工程应用提供了重要参考。
更新日期:2020-03-18
down
wechat
bug