当前位置: X-MOL 学术Adv. Nonlinear Stud. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regular Versus Singular Solutions in a Quasilinear Indefinite Problem with an Asymptotically Linear Potential
Advanced Nonlinear Studies ( IF 2.1 ) Pub Date : 2020-08-01 , DOI: 10.1515/ans-2020-2083
Julián López-Gómez 1 , Pierpaolo Omari 2
Affiliation  

Abstract The aim of this paper is analyzing the positive solutions of the quasilinear problem - ( u ′ / 1 + ( u ′ ) 2 ) ′ = λ ⁢ a ⁢ ( x ) ⁢ f ⁢ ( u ) in ⁢ ( 0 , 1 ) , u ′ ⁢ ( 0 ) = 0 , u ′ ⁢ ( 1 ) = 0 , -\bigl{(}u^{\prime}/\sqrt{1+(u^{\prime})^{2}}\big{)}^{\prime}=\lambda a(x)f(u)% \quad\text{in }(0,1),\qquad u^{\prime}(0)=0,\quad u^{\prime}(1)=0, where λ ∈ ℝ {\lambda\in\mathbb{R}} is a parameter, a ∈ L ∞ ⁢ ( 0 , 1 ) {a\in L^{\infty}(0,1)} changes sign once in ( 0 , 1 ) {(0,1)} and satisfies ∫ 0 1 a ⁢ ( x ) ⁢ 𝑑 x < 0 {\int_{0}^{1}a(x)\,dx<0} , and f ∈ 𝒞 1 ⁢ ( ℝ ) {f\in\mathcal{C}^{1}(\mathbb{R})} is positive and increasing in ( 0 , + ∞ ) {(0,+\infty)} with a potential, F ⁢ ( s ) = ∫ 0 s f ⁢ ( t ) ⁢ 𝑑 t {F(s)=\int_{0}^{s}f(t)\,dt} , quadratic at zero and linear at + ∞ {+\infty} . The main result of this paper establishes that this problem possesses a component of positive bounded variation solutions, 𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} , bifurcating from ( λ , 0 ) {(\lambda,0)} at some λ 0 > 0 {\lambda_{0}>0} and from ( λ , ∞ ) {(\lambda,\infty)} at some λ ∞ > 0 {\lambda_{\infty}>0} . It also establishes that 𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} consists of regular solutions if and only if ∫ 0 z ( ∫ x z a ( t ) d t ) - 1 / 2 d x = + ∞ or ∫ z 1 ( ∫ x z a ( t ) d t ) - 1 / 2 d x = + ∞ . \int_{0}^{z}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}dx=+\infty\quad\text% {or}\quad\int_{z}^{1}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}dx=+\infty. Equivalently, the small positive regular solutions of 𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} become singular as they are sufficiently large if and only if ( ∫ x z a ( t ) d t ) - 1 / 2 ∈ L 1 ( 0 , z ) and ( ∫ x z a ( t ) d t ) - 1 / 2 ∈ L 1 ( z , 1 ) . \Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}(0,z)\quad\text{and}% \quad\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}(z,1). This is achieved by providing a very sharp description of the asymptotic profile, as λ → λ ∞ {\lambda\to\lambda_{\infty}} , of the solutions. According to the mutual positions of λ 0 {\lambda_{0}} and λ ∞ {\lambda_{\infty}} , as well as the bifurcation direction, the occurrence of multiple solutions can also be detected.

中文翻译:

具有渐近线性势的拟线性不定问题中的正则解与奇异解

本文的主要结果表明,该问题具有正有界变化解的分量,𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} ,从 ( λ , 0 ) 分叉{(\lambda,0)} 在一些 λ 0 > 0 {\lambda_{0}>0} 和从 ( λ , ∞ ) {(\lambda,\infty)} 在一些 λ ∞ > 0 {\lambda_{\ infty}>0}。它还确定 𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} 由正则解组成当且仅当 ∫ 0 z ( ∫ xza ( t ) dt ) - 1 / 2 dx = + ∞ 或 ∫ z 1 ( ∫ xza ( t ) dt ) - 1 / 2 dx = + ∞ 。\int_{0}^{z}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}dx=+\infty\ quad\text% {or}\quad\int_{z}^{1}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/ 2}}dx=+\infty。同样,𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} 的小正正则解变得奇异,因为它们足够大当且仅当 ( ∫ xza ( t ) dt ) - 1 / 2 ∈ L 1 ( 0 , z ) 和 ( ∫ xza ( t ) dt ) - 1 / 2 ∈ L 1 ( z , 1 ) 。\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}(0,z)\quad\ text{and}% \quad\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}( z,1)。这是通过提供对渐近曲线的非常清晰的描述来实现的,如 λ → λ ∞ {\lambda\to\lambda_{\infty}} ,解决方案。根据 λ 0 {\lambda_{0}} 和 λ ∞ {\lambda_{\infty}} 的相互位置,以及分叉方向,也可以检测出多个解的出现。z)\quad\text{and}% \quad\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L ^{1}(z,1)。这是通过提供对渐近轮廓的非常清晰的描述来实现的,如 λ → λ ∞ {\lambda\to\lambda_{\infty}} ,解决方案。根据 λ 0 {\lambda_{0}} 和 λ ∞ {\lambda_{\infty}} 的相互位置,以及分叉方向,也可以检测出多个解的出现。z)\quad\text{and}% \quad\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L ^{1}(z,1)。这是通过提供对渐近曲线的非常清晰的描述来实现的,如 λ → λ ∞ {\lambda\to\lambda_{\infty}} ,解决方案。根据 λ 0 {\lambda_{0}} 和 λ ∞ {\lambda_{\infty}} 的相互位置,以及分叉方向,也可以检测出多个解的出现。
更新日期:2020-08-01
down
wechat
bug