当前位置: X-MOL 学术J. Non-Newtonian Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational analysis of the extrudate shape of three-dimensional viscoelastic, non-isothermal extrusion flows
Journal of Non-Newtonian Fluid Mechanics ( IF 3.1 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.jnnfm.2020.104310
M.M.A. Spanjaards , M.A. Hulsen , P.D. Anderson

A 3D transient non-isothermal finite element code is developed to predict the extrudate shape of viscoelastic fluids emerging from an asymmetric keyhole shaped die. The corner-line method is used to model the movement of the free surfaces. The code is tested using two benchmark problems. First the corner-line method is tested using a trumpet shaped object in a 3D uniaxial extensional flow. Secondly, the implementation of the energy balance and the viscoelastic material behaviour is tested using a non-isothermal pipeflow. For both benchmark problems convergence was obtained, giving confidence that the 3D non-isothermal swell problem is correctly implemented. The influence of shear-thinning, elasticity and temperature on the shape of the extrudate is systematically studied. Results are shown for isothermal flows as well as for non-isothermal flows, with isothermal and non-isothermal die walls. Results for isothermal die walls show increasing extrudate swelling with increasing elasticity and that the swelling opposes extrudate bending. Shear-thinning on the other hand, opposes swelling, which initially promotes bending, but also flattens the asymmetric velocity profile, leading to less extrudate bending for high amounts of shear-thinning. Furthermore, extrudate bending was observed even for purely viscous, isothermal extrudates, suggesting that bending is caused by asymmetry in the viscous stresses. Extrudate swelling can be influenced by the wall temperature of the die and non-isothermal die walls can lead to a change in bending direction.



中文翻译:

三维粘弹性非等温挤压流的挤压物形状的计算分析

开发了3D瞬态非等温有限元代码,以预测从非对称锁孔形模具中出现的粘弹性流体的挤出物形状。角线方法用于模拟自由曲面的运动。该代码使用两个基准测试问题进行了测试。首先,在3D单轴延伸流中使用喇叭形对象测试角线方法。其次,使用非等温管道测试能量平衡和粘弹性材料行为的实现。对于这两个基准问题,都获得了收敛,这使人们有信心正确实施了3D非等温膨胀问题。系统地研究了剪切稀化,弹性和温度对挤出物形状的影响。显示了等温流和非等温流的结果,具有等温和非等温模具壁。等温模具壁的结果显示,随着弹性的增加,挤出物膨胀增加,并且膨胀与挤出物的弯曲相反。另一方面,剪切稀化与溶胀相反,它最初会促进弯曲,但也会使非对称速度分布变平坦,从而导致大量剪切稀化时较少的挤出物弯曲。此外,甚至对于纯粘性等温挤出物也观察到挤出物弯曲,这表明弯曲是由粘性应力的不对称引起的。挤出物溶胀会受到模具壁温度的影响,而非等温模具壁会导致弯曲方向发生变化。等温模具壁的结果显示,随着弹性的增加,挤出物膨胀增加,并且膨胀与挤出物的弯曲相反。另一方面,剪切稀化与溶胀相反,它最初会促进弯曲,但也会使非对称速度分布变平坦,从而导致大量剪切稀化时较少的挤出物弯曲。此外,甚至对于纯粘性等温挤出物也观察到挤出物弯曲,这表明弯曲是由粘性应力的不对称引起的。挤出物溶胀会受到模具壁温度的影响,而非等温模具壁会导致弯曲方向发生变化。等温模具壁的结果表明,随着弹性的增加,挤出物溶胀增加,并且该膨胀与挤出物的弯曲相反。另一方面,剪切稀化与溶胀相反,它最初会促进弯曲,但也会使非对称速度分布变平坦,从而导致大量剪切稀化时较少的挤出物弯曲。此外,甚至对于纯粘性等温挤出物也观察到挤出物弯曲,这表明弯曲是由粘性应力的不对称引起的。挤出物溶胀会受到模具壁温度的影响,而非等温模具壁会导致弯曲方向发生变化。从而减少了挤出物的弯曲,从而使剪切稀薄程度更高。此外,甚至对于纯粘性等温挤出物也观察到挤出物弯曲,这表明弯曲是由粘性应力的不对称引起的。挤出物溶胀会受到模具壁温度的影响,而非等温模具壁会导致弯曲方向发生变化。从而减少了挤出物的弯曲,从而使剪切稀薄程度更高。此外,甚至对于纯粘性,等温挤出物也观察到挤出物弯曲,这表明弯曲是由粘性应力的不对称引起的。挤出物溶胀会受到模具壁温度的影响,而非等温模具壁会导致弯曲方向发生变化。

更新日期:2020-06-01
down
wechat
bug