当前位置: X-MOL 学术Atmos. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Air quality impacts of the 2018 Mt. Kilauea Volcano eruption in Hawaii: A regional chemical transport model study with satellite-constrained emissions
Atmospheric Environment ( IF 4.2 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.atmosenv.2020.117648
Youhua Tang , Daniel Q. Tong , Kai Yang , Pius Lee , Barry Baker , Alice Crawford , Winston Luke , Ariel Stein , Patrick C. Campbell , Allison Ring , James Flynn , Yuxuan Wang , Jeff McQueen , Li Pan , Jianping Huang , Ivanka Stajner

Abstract Volcanic eruptions could bring a vast amount of sulfur dioxide (SO2) and ash into the air, often imposing substantial impacts on air quality and the ecosystem. Quantifying its impacts, however, is difficult due to the uncertainties in estimating the strength and variations of volcanic emissions. Here we developed and evaluated a new approach to combine satellite SO2 detection and chemical transport modeling to assess the impact of the 2018 Mt. Kilauea eruption on air quality over Hawaii. During the sustained eruption of the Kilauea Volcano in Hawaii's Big Island from May to July 2018, considerable SO2 and PM2.5 enhancements were observed both from the ground and from space. We studied this case using an experimental version of the NOAA National Air Quality Forecast Capability (NAQFC) modeling system. Daily emissions of SO2 and ash were estimated using a combination of SO2 column density retrieved by Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) aboard the Suomi-NPP satellite and the NAQFC model with an inverse emission modeling approach. We found that the volcanic SO2 emission rates peaked at 15,000 mol/s from the Kilauea's East Rift zone and Summit. The formation and transport of volcanic smog, or Vog, was highly dependent upon the vertical distribution of the volcanic emission, controlled by the heat flux of emission sources. We conducted four model simulations with various emission settings, and compared them to satellite data (CALIOP, OMPS and VIIRS) and in-situ measurements. All the runs tended to underpredict the peak values of surface SO2 and PM2.5 (particulate matter smaller than 2.5 μm in diameter). The “No Plume Rise” run underestimated the Vog plume rise and downstream transport. Using fixed emission rate or removing the temporal variations (”3-Day Mean”) led to miss peak Vog effects or inconsistent transport pattern compared to the observations. Therefore, the Base simulation with daily-varying emission and plume rise was used to quantify the air quality effects of the Kilauea eruption. We found that the volcanic eruption elevated surface PM2.5 concentration by 30–40 μg/m3 in the southeast part of the Big Island, with peak values up to 300 μg/m3. The Vog effect on trace gases, such as O3, NOx, and non-methane hydrocarbons, were much weaker (

中文翻译:

2018 年山的空气质量影响。夏威夷基拉韦厄火山喷发:受卫星限制排放的区域化学输运模型研究

摘要 火山喷发可将大量二氧化硫 (SO2) 和灰烬带入空气中,通常会对空气质量和生态系统产生重大影响。然而,由于估计火山排放强度和变化的不确定性,量化其影响很困难。在这里,我们开发并评估了一种新方法,将卫星 SO2 检测和化学传输建模相结合,以评估 2018 年 Mt. 的影响。基拉韦厄火山喷发影响夏威夷上空的空气质量。2018 年 5 月至 7 月夏威夷大岛基拉韦厄火山持续喷发期间,从地面和太空都观察到 SO2 和 PM2.5 显着增强。我们使用 NOAA 国家空气质量预测能力 (NAQFC) 建模系统的实验版本研究了这个案例。SO2 和灰分的每日排放量是使用 Suomi-NPP 卫星上的 Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) 反演的 SO2 柱密度与采用逆排放建模方法的 NAQFC 模型相结合来估算的。我们发现基拉韦厄东部裂谷带和峰顶的火山 SO2 排放速率达到 15,000 mol/s 的峰值。火山烟雾 (Vog) 的形成和运输高度依赖于火山排放的垂直分布,受排放源的热通量控制。我们使用不同的发射设置进行了四个模型模拟,并将它们与卫星数据(CALIOP、OMPS 和 VIIRS)和原位测量进行了比较。所有运行都倾向于低估表面 SO2 和 PM2.5(直径小于 2.5 微米的颗粒物)的峰值。“无羽流上升”运行低估了 Vog 羽流上升和下游运输。与观察结果相比,使用固定排放率或去除时间变化(“3 天平均值”)会导致错过峰值 Vog 效应或不一致的传输模式。因此,使用具有每日变化的排放和羽流上升的 Base 模拟来量化基拉韦厄火山喷发对空气质量的影响。我们发现火山喷发使大岛东南部的地表 PM2.5 浓度升高了 30-40 μg/m3,峰值高达 300 μg/m3。Vog 对 O3、NOx 和非甲烷碳氢化合物等痕量气体的影响要弱得多(与观察结果相比,使用固定排放率或去除时间变化(“3 天平均值”)会导致错过峰值 Vog 效应或不一致的传输模式。因此,使用具有每日变化的排放和羽流上升的 Base 模拟来量化基拉韦厄火山喷发对空气质量的影响。我们发现火山喷发使大岛东南部的地表 PM2.5 浓度升高了 30-40 μg/m3,峰值高达 300 μg/m3。Vog 对 O3、NOx 和非甲烷碳氢化合物等痕量气体的影响要弱得多(与观察结果相比,使用固定排放率或去除时间变化(“3 天平均值”)会导致错过峰值 Vog 效应或不一致的传输模式。因此,使用具有每日变化的排放和羽流上升的 Base 模拟来量化基拉韦厄火山喷发对空气质量的影响。我们发现火山喷发使大岛东南部的地表 PM2.5 浓度升高了 30-40 μg/m3,峰值高达 300 μg/m3。Vog 对 O3、NOx 和非甲烷碳氢化合物等痕量气体的影响要弱得多(5 在大岛东南部的浓度为 30–40 μg/m3,峰值高达 300 μg/m3。Vog 对 O3、NOx 和非甲烷碳氢化合物等痕量气体的影响要弱得多(5 在大岛东南部的浓度为 30–40 μg/m3,峰值高达 300 μg/m3。Vog 对 O3、NOx 和非甲烷碳氢化合物等痕量气体的影响要弱得多(
更新日期:2020-09-01
down
wechat
bug