当前位置: X-MOL 学术3D Print. Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-Dimensional Printed Stamps for the Fabrication of Patterned Microwells and High-Throughput Production of Homogeneous Cell Spheroids.
3D Printing and Additive Manufacturing ( IF 3.1 ) Pub Date : 2020-06-05 , DOI: 10.1089/3dp.2019.0129
Tomas Gonzalez-Fernandez 1 , Alejandro J Tenorio 1 , J Kent Leach 1, 2
Affiliation  

Aggregation of cells into spheroids and organoids is a promising tool for regenerative medicine, cancer and cell biology, and drug discovery due to their recapitulation of the cell–cell and cell–matrix interactions found in vivo. Traditional approaches for the production of spheroids, such as the hanging drop method, are limited by the lack of reproducibility and the use of labor-intensive and time-consuming techniques. The need for high-throughput approaches allowing for the quick and reproducible formation of cell aggregates has driven the development of soft lithography techniques based on the patterning of microwells into nonadherent hydrogels. However, these methods are also limited by costly, labor-intensive, and multistep protocols that could impact the sterility of the process and efficiency of spheroid formation. In this study, we describe a one-step method for the fabrication of patterned nonadherent microwells into tissue culture plates using three-dimensional (3D) printed stamps and evaluate the production of cell spheroids of different sizes and cell sources. The generation of bone marrow-derived mesenchymal stromal cell and endothelial cell spheroids by the use of 3D printed stamps was superior in comparison with a widely used multistep mold technique, yielding spheroids of larger sizes and higher DNA content. The 3D stamps produced spheroids of more consistent diameter and DNA content when compared with other commercially available methods. These 3D printed stamps offer a tunable, simple, fast, and cost-effective approach for the production of reproducible spheroids and organoids for a wide range of applications.

中文翻译:

用于图案化微孔的制造和均质细胞球体的高通量生产的三维印刷邮票。

将细胞聚集为类球体和类器官是再生医学,癌症和细胞生物学以及药物发现的有前途的工具,因为它们概括了体内发现的细胞-细胞和细胞-基质相互作用。传统的生产球体的方法,例如悬滴法,由于缺乏可重复性以及使用劳动强度大且耗时的技术而受到限制。需要高通量方法以快速且可重现地形成细胞聚集体,这推动了基于微孔到非粘附水凝胶图案化的软光刻技术的发展。但是,这些方法还受到昂贵,劳动密集型和多步骤规程的限制,这些规程可能会影响工艺的无菌性和球体形成的效率。在这项研究中,我们描述了一种使用三维(3D)打印邮票将带图案的非粘附性微孔制作到组织培养板中的一步法,并评估了不同大小和细胞来源的细胞球体的生产。与广泛使用的多步模塑技术相比,通过使用3D打印的邮票生成骨髓来源的间充质基质细胞和内皮细胞球体要好,可产生更大尺寸和更高DNA含量的球体。与其他市售方法相比,3D邮票产生的球体直径和DNA含量更一致。这些3D打印邮票提供了一种可调谐,简单,快速且具有成本效益的方法,用于生产适用于广泛应用的可复制球体和类器官。与其他市售方法相比,3D邮票产生的球体直径和DNA含量更一致。这些3D打印邮票提供了一种可调谐,简单,快速且具有成本效益的方法,可生产适用于广泛应用的可复制球体和类器官。与其他市售方法相比,3D邮票产生的球体直径和DNA含量更一致。这些3D打印邮票提供了一种可调谐,简单,快速且具有成本效益的方法,用于生产适用于广泛应用的可复制球体和类器官。
更新日期:2020-06-05
down
wechat
bug