当前位置: X-MOL 学术Nat. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter
Nature Electronics ( IF 34.3 ) Pub Date : 2020-06-01 , DOI: 10.1038/s41928-020-0417-9
Ueli Koch , Christopher Uhl , Horst Hettrich , Yuriy Fedoryshyn , Claudia Hoessbacher , Wolfgang Heni , Benedikt Baeuerle , Bertold I. Bitachon , Arne Josten , Masafumi Ayata , Huajun Xu , Delwin L. Elder , Larry R. Dalton , Elad Mentovich , Paraskevas Bakopoulos , Stefan Lischke , Andreas Krüger , Lars Zimmermann , Dimitris Tsiokos , Nikos Pleros , Michael Möller , Juerg Leuthold

To address the challenge of increasing data rates, next-generation optical communication networks will require the co-integration of electronics and photonics. Heterogeneous integration of these technologies has shown promise, but will eventually become bandwidth-limited. Faster monolithic approaches will therefore be needed, but monolithic approaches using complementary metal–oxide–semiconductor (CMOS) electronics and silicon photonics are typically limited by their underlying electronic or photonic technologies. Here, we report a monolithically integrated electro-optical transmitter that can achieve symbol rates beyond 100 GBd. Our approach combines advanced bipolar CMOS with silicon plasmonics, and addresses key challenges in monolithic integration through co-design of the electronic and plasmonic layers, including thermal design, packaging and a nonlinear organic electro-optic material. To illustrate the potential of our technology, we develop two modulator concepts—an ultra-compact plasmonic modulator and a silicon-plasmonic modulator with photonic routing—both directly processed onto the bipolar CMOS electronics.



中文翻译:

单片双极CMOS电子-等离子体高速发送器

为了应对日益增长的数据速率的挑战,下一代光通信网络将需要电子和光子学的集成。这些技术的异构集成已显示出希望,但最终将限制带宽。因此,需要更快的单片方法,但是使用互补金属氧化物半导体(CMOS)电子学和硅光子学的单片方法通常受到其基础电子或光子技术的限制。在这里,我们报告了一个单片集成的电光发射机,可以实现超过100 GBd的符号率。我们的方法将先进的双极CMOS与硅等离激元相结合,并通过电子和等离激元层的共同设计(包括热设计,包装和非线性有机电光材料。为了说明我们技术的潜力,我们开发了两个调制器概念-超紧凑型等离子调制器和具有光子路由的硅-等离子调制器-都直接处理在双极CMOS电子器件上。

更新日期:2020-06-01
down
wechat
bug