当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Infrared neural stimulation and inhibition using an implantable silicon photonic microdevice
Microsystems & Nanoengineering ( IF 7.3 ) Pub Date : 2020-06-01 , DOI: 10.1038/s41378-020-0153-3
Ágoston Csaba Horváth 1, 2, 3 , Sándor Borbély 4, 5 , Örs Csanád Boros 6 , Lili Komáromi 6 , Pál Koppa 6 , Péter Barthó 4 , Zoltán Fekete 1, 2
Affiliation  

Brain is one of the most temperature sensitive organs. Besides the fundamental role of temperature in cellular metabolism, thermal response of neuronal populations is also significant during the evolution of various neurodegenerative diseases. For such critical environmental factor, thorough mapping of cellular response to variations in temperature is desired in the living brain. So far, limited efforts have been made to create complex devices that are able to modulate temperature, and concurrently record multiple features of the stimulated region. In our work, the in vivo application of a multimodal photonic neural probe is demonstrated. Optical, thermal, and electrophysiological functions are monolithically integrated in a single device. The system facilitates spatial and temporal control of temperature distribution at high precision in the deep brain tissue through an embedded infrared waveguide, while it provides recording of the artefact-free electrical response of individual cells at multiple locations along the probe shaft. Spatial distribution of the optically induced temperature changes is evaluated through in vitro measurements and a validated multi-physical model. The operation of the multimodal microdevice is demonstrated in the rat neocortex and in the hippocampus to increase or suppress firing rate of stimulated neurons in a reversible manner using continuous wave infrared light (λ = 1550 nm). Our approach is envisioned to be a promising candidate as an advanced experimental toolset to reveal thermally evoked responses in the deep neural tissue.



中文翻译:

使用可植入硅光子微器件进行红外神经刺激和抑制

大脑是对温度最敏感的器官之一。除了温度在细胞代谢中的基本作用外,神经元群的热反应在各种神经退行性疾病的演变过程中也很重要。对于这样的关键环境因素,需要在活体大脑中对细胞对温度变化的反应进行彻底的映射。到目前为止,已经做出有限的努力来创建能够调节温度并同时记录受激区域的多个特征的复杂设备。在我们的工作中,展示了多模态光子神经探针的体内应用。光学、热和电生理功能被整体集成在一个设备中。该系统通过嵌入式红外波导促进了对深部脑组织中温度分布的高精度空间和时间控制,同时它提供了沿探针轴多个位置单个细胞的无伪影电响应的记录。光致温度变化的空间分布通过体外测量和经过验证的多物理模型进行评估。在大鼠新皮层和海马中证明了多模态微器件的操作,使用连续波红外光以可逆的方式增加或抑制受刺激神经元的放电率。光致温度变化的空间分布通过体外测量和经过验证的多物理模型进行评估。在大鼠新皮层和海马中证明了多模态微器件的操作,使用连续波红外光以可逆的方式增加或抑制受刺激神经元的放电率。光致温度变化的空间分布通过体外测量和经过验证的多物理模型进行评估。在大鼠新皮层和海马中证明了多模态微器件的操作,使用连续波红外光以可逆的方式增加或抑制受刺激神经元的放电率。λ  = 1550 纳米)。我们的方法被认为是一种有前途的候选者,作为一种先进的实验工具集,可以揭示深部神经组织中的热诱发反应。

更新日期:2020-06-01
down
wechat
bug