当前位置: X-MOL 学术J. Environ. Qual. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Erratum to: Evaluation of water quality functions of conventional and advanced soil‐based onsite wastewater treatment systems
Journal of Environmental Quality ( IF 2.4 ) Pub Date : 2020-04-14 , DOI: 10.1002/jeq2.20068
Jennifer A. Cooper , George W. Loomis , David V. Kalen , Jose A. Amador

J.A. Cooper, G.W. Loomis, D.V. Kalen, & J.A. Amador. (2015). J. Environ. Qual . 44:953–962. https://doi.org/10.2134/jeq2014.06.0277

We discovered an error in our article, involving the use of an incorrect value for the ideal gas law constant, R , of 1.08205, instead of the correct value 0.08205. We also discovered an incorrect conversion from moles of N2O to moles of N, 1 mole N/mole of N2O was used instead of the correct value of 2 moles of N/mole of N2O). The incorrect value of R and mole conversion were used in N2O gas flux calculations. This affects a number of values presented in the article, noted below, although the changes do not have a material effect on interpretation of the results or the implications of the study.

Error on p. 956 :

In Equation 1, the correct value for R is 0.08205, not 1.08205.

Error on p. 959 :

Old incorrect text: The flux of N2O was significantly higher from SND (63 μg N m−2 h−1) and GEO (55 μg N m−2 h−1) than from P&S (3 μg N m−2 h−1).

Corrected text (changes in bold): The flux of N2O was significantly higher from SND (1653  μg N m−2 h−1) and GEO (1453  μg N m−2 h−1) than from P&S (86  μg N m−2 h−1).

Error on pp. 959–960 :

Old incorrect text: We calculated a mass balance for N entering and exiting the drainfields to help quantify loss pathways (Fig. 4). In P&S, outputs (514 g N m−2 yr−1) of N accounted for 87.6% of inputs (588 g N m−2 yr−1) to the drainfield, with 12.4% (74 g N m−2 yr−1) unaccounted for. Loss of N occurred mainly as dissolved N species, comprised of NO3 (83%), organic N (16%) and NH4 (1%). Nitrous oxide in gas and dissolved phases accounted for 0.04% of N outputs, suggesting N2O production was not a major loss pathway in P&S.

image
FIGURE 4
Open in figure viewer
Corrected Figure 4. Changes to overall N Out, N2Oflux, and unaccounted N for all three systems
image
FIGURE S8
Open in figure viewer
Corrected Supplemental Figure S8. Correction of values using R  = 0.08205 and correct mole conversion resulted in 26.3754 times higher values in the correct graph. The relative proportion of N2O‐N flux between treatments remained the same.

Nitrogen was better accounted for in SND and GEO, with outputs (2194 and 2170 g N m−2 yr−1) accounting for 95.1 and 94.1% of inputs (2306 g N m−2 yr−1), respectively. Loss of N occurred mainly as dissolved N species, comprised of NO3 (84–85%), organic N (14–15%) and NH4 (<1%). Nitrous oxide in the gas and dissolved phase accounted for 0.08% of N loss in SND and GEO, indicating this was not an important pathway for net N loss in either drainfield type.

Corrected text (changes in bold): We calculated a mass balance for N entering and exiting the drainfields to help quantify loss pathways (Fig. 4). In P&S, outputs (515  g N m−2 yr−1) of N accounted for 87.6% of inputs (588 g N m−2 yr−1) to the drainfield, with 12.4% (73  g N m−2 yr−1) unaccounted for. Loss of N occurred mainly as dissolved N species, comprised of NO3 (83%), organic N (16%) and NH4 (1%). Nitrous oxide in gas and dissolved phases accounted for 0.2% of N outputs, suggesting N2O production was not a major loss pathway in P&S.

Nitrogen was better accounted for in SND and GEO, with outputs (2208 and 2182  g N m−2 yr−1) accounting for 95.8 and 94.6 % of inputs (2306 g N m−2 yr−1), respectively. Loss of N occurred mainly as dissolved N species, comprised of NO3 (84–85%), organic N (14–15%) and NH4 (<1%). Nitrous oxide in the gas and dissolved phase accounted for 0.6–0.7% of N loss in SND and GEO, indicating this was not an important pathway for net N loss in either drainfield type.



中文翻译:

勘误到:评估常规和高级基于土壤的现场废水处理系统的水质功能

JA Cooper,GW Loomis,DV Kalen和JA Amador。(2015)。J.环境。资格赛。44:953–962。https://doi.org/10.2134/jeq2014.06.0277

我们在文章中发现了一个错误,涉及使用理想气体定律常数R的不正确值1.08205,而不是正确值0.08205。我们还发现从N 2 O摩尔到N摩尔的不正确转化,使用1摩尔N /摩尔N 2 O代替了正确的2摩尔N /摩尔N 2 O值。在N 2 O气体通量计算中使用了不正确的R和摩尔转化率值。尽管这些更改对结果的解释或研究的含义没有实质性的影响,但这影响了本文中提出的许多价值,如下所述。

p错误。956

在公式1中,R的正确值为0.08205,而不是1.08205。

p错误。959

旧的错误文本: SND(63μgN m -2 h -1)和GEO(55μgN m -2 h -1)的N 2 O通量明显高于P&S(3μgN m -2 h)-1)。

纠正的文本(以粗体显示): N中的磁通2 O的从SND显著更高(1653 微克n×m个-2 ħ -1)和GEO(1453 微克n×m个-2 ħ -1)比从P&S(86 微克Ñ m -2 h -1)。

pp。959–960出现错误

旧的不正确的文字:我们计算了N进入和离开排水区的质量平衡,以帮助量化损失途径(图4)。在P&S中,N的输出量(514 g N m -2  yr -1)占流失场的输入量(588 g N m -2  yr -1)的87.6%,占12.4%(74 g N m -2  yr -1- 1)无法解释。N的流失主要是溶解的N物种,包括NO 3(83%),有机N(16%)和NH 4(1%)。气相和溶解相中的一氧化二氮占氮产量的0.04%,表明N 2 O的产生不是P&S的主要损失途径。

图片
图4
在图形查看器中打开
校正了图4。所有三个系统的总N Out,N 2 O通量和未计入的N的变化
图片
图S8
在图形查看器中打开
更正了补充图S8。使用R  = 0.08205进行的值校正和正确的摩尔转化率导致正确图中的值高26.3754倍。处理之间N 2 O-N通量的相对比例保持不变。

氮在SND和GEO中的占比更好,产出(2194 g N m -2  yr -1和2194 g N m -2 yr -1)分别占输入的95.1%和94.1%(2306 g N m -2  yr -1)。N的损失主要是溶解的N物种,包括NO 3(84-85%),有机N(14-15%)和NH 4(<1%)。气相和溶解相中的一氧化二氮占SND和GEO中N损失的0.08%,表明这不是两种流失类型中N净损失的重要途径。

更正的文本(粗体更改):我们计算了N流入和流出排水区的质量平衡,以帮助量化损失途径(图4)。在P&S中, N的输出量(515 g N m -2  yr -1)占流失场的输入量(588 g N m -2  yr -1)的87.6%,占12.4%(73  g N m -2  yr -1- 1)无法解释。N的流失主要是溶解的N物种,包括NO 3(83%),有机N(16%)和NH 4(1%)。气相和溶解相中的一氧化二氮占氮产量的0.2%,表明N 2产氧量不是P&S中的主要损失途径。

氮在SND和GEO中的占比更好,产出(2208和2182  g N m -2  yr -1)分别占输入(2306 g N m -2  yr -1)的95.8和94.6%。N的损失主要是溶解的N物种,包括NO 3(84-85%),有机N(14-15%)和NH 4(<1%)。气相和溶解相中的一氧化二氮占SND和GEO中N损失的0.6-0.7%,表明这不是两种流失类型中N净损失的重要途径。

更新日期:2020-04-14
down
wechat
bug