当前位置: X-MOL 学术Math. Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An explicitly multi-component arterial gas embolus dissolves much more slowly than its one-component approximation.
Mathematical Biosciences ( IF 1.9 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.mbs.2020.108393
Saul Goldman 1 , J M Solano-Altamirano 2
Affiliation  

We worked out the growth and dissolution rates of an arterial gas embolism (AGE), to illustrate the evolution over time of its size and composition, and the time required for its total dissolution. We did this for a variety of breathing gases including air, pure oxygen, Nitrox and Heliox (each over a range of oxygen mole fractions), in order to assess how the breathing gas influenced the evolution of the AGE. The calculations were done by numerically integrating the underlying rate equations for explicitly multi-component AGEs, that contained a minimum of three (water, carbon dioxide and oxygen) and a maximum of five components (water, carbon dioxide, oxygen, nitrogen and helium). The rate equations were straight-forward extensions of those for a one-component gas bubble. They were derived by using the Young–Laplace equation and Dalton’s law for the pressure in the AGE, the Laplace equation for the dissolved solute concentration gradients in solution, Henry’s law for gas solubilities, and Fick’s law for diffusion rates across the AGE/arterial blood interface. We found that the 1-component approximation, under which the contents of the AGE are approximated by its dominant component, greatly overestimates the dissolution rate and underestimates the total dissolution time of an AGE. This is because the 1-component approximation manifestly precludes equilibration between the AGE and arterial blood of the inspired volatile solutes (O2, N2, He) in arterial blood. Our calculations uncovered an important practical result, namely that the administration of Heliox, as an adjunct to recompression therapy for treating a suspected N2-rich AGE must be done with care. While Helium is useful for preventing nitrogen narcosis which can arise in aggressive recompression therapy wherein the N2 partial pressure can be quite high (e.g. 5 atm), it also temporarily expands the AGE, beyond the expansion arising from the use of Oxygen-rich Nitrox. For less aggressive recompression therapy wherein nitrogen narcosis is not a significant concern, Oxygen-rich Nitrox is to be preferred, both because it does not temporarily expand the AGE as much as Heliox, and because it is much cheaper and more conservation-minded.



中文翻译:

明显的多组分动脉气体栓塞溶解比其单组分逼近要慢得多。

我们计算了动脉气体栓塞(AGE)的生长和溶解速率,以说明其大小和组成随时间的演变以及其完全溶解所需的时间。为了评估呼吸气体如何影响AGE的演变,我们对各种呼吸气体进行了此操作,包括空气,纯氧,高氧和氦氧混合气(每种都在一定范围的氧气摩尔分数内)。通过对明确的多组分AGE的基本速率方程进行数值积分来完成计算,该方程包含最少三个(水,二氧化碳和氧气)和最多五个组分(水,二氧化碳,氧气,氮气和氦气) 。速率方程是单组分气泡方程的直接扩展。通过使用Young–Laplace方程和AGE中的压力的​​道尔顿定律,溶液中溶解的溶质浓度梯度的Laplace方程,气体溶解度的Henry定律以及关于AGE /动脉血中扩散速率的Fick定律来导出它们接口。我们发现1-组分近似法(在该法下,AGE的含量由其主要组分近似)极大地高估了AGE的溶出速率,并低估了AGE的总溶解时间。这是因为1成分近似值明显排除了AGE和吸入的挥发性溶质的动脉血之间的平衡(以及关于AGE /动脉血液界面的扩散率的Fick定律。我们发现1-组分近似法(在该法下,AGE的含量由其主要组分近似)极大地高估了AGE的溶出速率,并低估了AGE的总溶解时间。这是因为1成分近似值明显排除了AGE和吸入的挥发性溶质的动脉血之间的平衡(以及关于AGE /动脉血液界面的扩散率的Fick定律。我们发现1-组分近似法(在该法下,AGE的含量由其主要组分近似)极大地高估了AGE的溶出速率,并低估了AGE的总溶解时间。这是因为1成分近似值明显排除了AGE和吸入的挥发性溶质的动脉血之间的平衡(Ø2ñ2(他)在动脉血中。我们的计算发现了重要的实际结果,即Heliox的管理可作为再压缩疗法的辅助治疗可疑ñ2-AGE年龄一定要小心。氦气可用于预防可能在积极的再压缩疗法中出现的氮麻醉,其中ñ2分压可能会很高(例如 5 atm),它还可以暂时扩展AGE,超出了由于使用富氧高氧而引起的扩展。对于不太关注氮麻醉的不太积极的再压缩疗法,富氧的Nitrox是首选,因为它暂时不能像Heliox那样使AGE暂时膨胀,而且因为它便宜得多并且更加注重保护。

更新日期:2020-06-01
down
wechat
bug