当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure evolution, mechanical properties, and strengthening mechanism of TiC reinforced Inconel 625 nanocomposites fabricated by selective laser melting
Materials Science and Engineering: A ( IF 6.1 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.msea.2020.139655
Lan Chen , Yuzhou Sun , Lin Li , Xudong Ren

Selective laser melting (SLM) at different laser fluences was used to fabricate a TiC/Inconel 625 (TiC/IN625) nanocomposites. The influence of laser fluence on surface morphology, microstructure evolution, and mechanical properties of the TiC/IN625 nanocomposites were studied. The surface morphology of the TiC/IN625 nanocomposites was affected by the applied laser fluence, and the surface morphology was optimal when the laser fluence was 208 J/mm3. The laser fluence influenced growth of the TiC/IN625 nanocomposites microstructure, ranging from insufficient growth (139 J/mm3) to sufficient growth (167 J/mm3) and refined columnar/cellular dendrites (208 J/mm3). A continuous and refined ring-like network structure with homogenously distributed reinforced TiC phases was obtained. Obvious grain refinement occurred in the TiC/IN625 nanocomposites because TiC nanoparticles acted as nuclei for heterogeneous nucleation. The TiC/IN625 nanocomposites printed at 208 J/mm3 exhibited 1219 MPa ultimate tensile strength and 31% fracture strain. The superior strength of the TiC/IN625 nanocomposites was attributed to dislocation strengthening, Orowan strengthening, grain refinement strengthening, and load-bearing strengthening.



中文翻译:

选择性激光熔融制备TiC增强Inconel 625纳米复合材料的组织演变,力学性能和增强机理

使用不同激光注量下的选择性激光熔融(SLM)来制备TiC / Inconel 625(TiC / IN625)纳米复合材料。研究了激光注量对TiC / IN625纳米复合材料的表面形态,微观结构演变和力学性能的影响。TiC / IN625纳米复合材料的表面形貌受激光通量的影响,当激光通量为208 J / mm 3时,表面形貌最佳。激光能量密度影响TiC / IN625纳米复合材料微结构的生长,从生长不足(139 J / mm 3)到足够的生长(167 J / mm 3)和细化的柱状/细胞树突(208 J / mm 3)。)。获得具有均匀分布的增强TiC相的连续且细化的环状网络结构。TiC / IN625纳米复合材料中发生了明显的晶粒细化,因为TiC纳米粒子充当了异质成核的核。以208 J / mm 3印刷的TiC / IN625纳米复合材料表现出1219 MPa的极限拉伸强度和31%的断裂应变。TiC / IN625纳米复合材料的优异强度归因于位错强化,Orowan强化,晶粒细化强化和承重强化。

更新日期:2020-07-02
down
wechat
bug