当前位置: X-MOL 学术J. Sound Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vortex sound interaction in acoustic resonance of a flow duct containing a plate
Journal of Sound and Vibration ( IF 4.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.jsv.2020.115482
Zhiliang Hong , Xiaoyu Wang , Xiaodong Jing , Xiaofeng Sun

Abstract Acoustic resonance induced by vortex shedding from a flat plate in a flow duct has been widely concerned in a variety of engineering applications. However, the unsteady vortex sound interaction is still an open issue. A nonlinear physical model is established based on three meshless sub-models, including the discrete vortex method (DVM) for vortex shedding, the vortex sound theory for sound radiation and the time-domain boundary element method (TDBEM) for sound propagation within the duct. Then, the feedback effect of sound wave is considered by adding acoustic particle velocity onto the potential flow of vortex shedding, which makes the coupling process bidirectional. Both the flow field, sound field and their unsteady interaction are obtained simultaneously. The predicted resonant frequency and amplitude results are in accordance with the previous experiment data, especially, the lock-in phenomenon is reasonably captured. By comparing the numerical results with and without acoustic feedback, it reveals that the feedback sound plays a significant role in the onset of lock-in phenomenon, including enhancing the strength and modulating the frequency of vortex shedding. It helps to get a more detailed insight into the underlying physical process of vortex sound interaction for studying control strategy.

中文翻译:

包含板的流道声共振中的涡声相互作用

摘要 流道中平板涡旋脱落引起的声共振在各种工程应用中受到广泛关注。然而,非定常涡旋声相互作用仍然是一个悬而未决的问题。基于三个无网格子模型建立非线性物理模型,包括离散涡流法(DVM)用于涡流脱落、涡流声理论用于声辐射和用于管道内声传播的时域边界元法(TDBEM) . 然后,通过在涡旋脱落势流上加入声粒子速度来考虑声波的反馈效应,使耦合过程具有双向性。同时获得流场、声场及其非定常相互作用。预测的谐振频率和振幅结果与之前的实验数据一致,特别是对锁定现象进行了合理的捕捉。通过比较有声反馈和无声反馈的数值结果,发现反馈声在锁定现象的发生中起着重要作用,包括增强强度和调节涡流脱落频率。它有助于更​​详细地了解涡声相互作用的潜在物理过程,以研究控制策略。包括增强强度和调节涡流脱落频率。它有助于更​​详细地了解涡声相互作用的潜在物理过程,以研究控制策略。包括增强强度和调节涡流脱落频率。它有助于更​​详细地了解涡声相互作用的潜在物理过程,以研究控制策略。
更新日期:2020-09-01
down
wechat
bug