当前位置: X-MOL 学术Sci. China Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile thermal decomposition synthesis of sub-5 nm nanodots with long-lived luminescence for autofluorescence-free bioimaging
Science China Materials ( IF 8.1 ) Pub Date : 2020-05-27 , DOI: 10.1007/s40843-020-1339-8
Xiaobo Lv , Na Chen , Jie Wang , Quan Yuan

Persistent nanophosphors can remain luminescent after the removal of the excitation. Persistent nanophosphors exhibit great advantages in biomedical fields, particularly in autofluorescence-free bioimaging and in-site-excitation-free photo-theranostics. Despite the great promise of persistent nanophosphors in biomedicine, studies on the controlled synthesis of persistent nanophosphors are limited. Herein, a metal acetylacetonate-based thermal decomposition method was developed for the synthesis of ultra-small persistent luminescence nanodots (PLNDs). The PLNDs display uniform size, good dispersibility and strong persistent luminescence. The luminescent properties of the PLNDs can be readily regulated by ion doping. The thermal decomposition method shows excellent versatility in the synthesis of PLNDs including gallate, sulfide and fluoride. Due to their ultra-small size and surface adsorbed hydrophobic ligand, the PLNDs can be easily integrated with liposomes to construct a stable and biocompatible persistent luminescent nanoplatform for biomedical applications. This work puts forwards a versatile method for the controlled synthesis of ultra-small persistent nanophosphors, and it may further contributes to the areas ranging from biosensing to cancer therapy.



中文翻译:

易于长寿命发光的亚5 nm纳米点的热分解合成,可进行无自发荧光的生物成像

去除激发后,持久性纳米磷光体可以保持发光。持久性纳米磷光体在生物医学领域表现出极大的优势,特别是在无自发荧光的生物成像和无现场激发的光热疗方面。尽管在生物医学中对持久性纳米磷光体有广阔的前景,但是关于持久性纳米光磷的受控合成的研究仍然有限。在此,开发了一种基于金属乙酰丙酮化物的热分解方法,用于合成超小型持久发光纳米点(PLND)。PLND显示出均匀的尺寸,良好的分散性和强大的持续发光。PLND的发光特性可通过离子掺杂轻松调节。热分解方法在PLNDs的合成中表现出优异的通用性,包括没食子酸酯,硫化物和氟化物。由于其超小尺寸和表面吸附的疏水性配体,PLND可以轻松与脂质体整合,以构建用于生物医学应用的稳定且生物相容的持久发光纳米平台。这项工作提出了一种通用的方法来控制合成超小型持久性纳米荧光粉,它可能会进一步促进从生物传感到癌症治疗的领域。

更新日期:2020-05-27
down
wechat
bug