当前位置: X-MOL 学术J. Biomed. Opt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable hyperspectral microscopy for high-contrast biomedical imaging in a snapshot.
Journal of Biomedical Optics ( IF 3.0 ) Pub Date : 2020-05-01 , DOI: 10.1117/1.jbo.25.5.050501
Jiao Lu 1 , Yuetian Ren 1 , Zhuoyu Zhang 1 , Wenbin Xu 2 , Xiaoyu Cui 1, 3 , Shuo Chen 1, 3 , Yudong Yao 1, 4
Affiliation  

SIGNIFICANCE Hyperspectral microscopy has been intensively explored in biomedical applications. However, due to its huge three-dimensional hyperspectral data cube, it typically suffers from slow data acquisition, mass data transmission and storage, and computationally expensive postprocessing. AIM To overcome the above limitations, a programmable hyperspectral microscopy technique was developed, which can perform hardware-based hyperspectral data postprocessing by the physical process of optical imaging in a snapshot. APPROACH A programmable hyperspectral microscopy system was developed to collect coded microscopic images from samples under multiplexed illumination. Principal component analysis followed by linear discriminant analysis scheme was coded into multiplexed illumination and realized by the physical process of optical imaging. The contrast enhancement was evaluated on two representative types of microscopic samples, i.e., tissue section and cell samples. RESULTS Compared to the microscopic images collected under white light illumination, the contrasts of coded microscopic images were significantly improved by 41% and 59% for tissue section and cell samples, respectively. CONCLUSIONS The proposed method can perform hyperspectral data acquisition and postprocessing simultaneously by its physical process, while preserving the most important spectral information to maximize the difference between the target and background, thus opening a new avenue for high-contrast microscopic imaging in a snapshot.

中文翻译:

用于快照中高对比度生物医学成像的可编程高光谱显微镜。

意义 高光谱显微镜已在生物医学应用中得到深入探索。然而,由于其巨大的 3D 高光谱数据立方体,它通常存在数据采集缓慢、数据传输和存储量大以及计算成本高的后处理问题。目的为了克服上述限制,开发了一种可编程高光谱显微镜技术,该技术可以通过快照中的光学成像物理过程进行基于硬件的高光谱数据后处理。方法 开发了一种可编程的高光谱显微镜系统,用于在多重照明下从样品中收集编码的显微图像。主成分分析和线性判别分析方案被编码成多路复用照明,并通过光学成像的物理过程来实现。在两种代表性类型的显微样品,即组织切片和细胞样品上评估对比度增强。结果 与白光照射下采集的显微图像相比,组织切片和细胞样本的编码显微图像对比度分别显着提高了 41% 和 59%。结论所提出的方法可以通过其物理过程同时进行高光谱数据采集和后处理,同时保留最重要的光谱信息以最大化目标和背景之间的差异,从而为快照中的高对比度显微成像开辟了新途径。结果 与白光照射下采集的显微图像相比,组织切片和细胞样本的编码显微图像对比度分别显着提高了 41% 和 59%。结论所提出的方法可以通过其物理过程同时进行高光谱数据采集和后处理,同时保留最重要的光谱信息以最大化目标和背景之间的差异,从而为快照中的高对比度显微成像开辟了新途径。结果 与白光照射下采集的显微图像相比,组织切片和细胞样本的编码显微图像对比度分别显着提高了 41% 和 59%。结论所提出的方法可以通过其物理过程同时进行高光谱数据采集和后处理,同时保留最重要的光谱信息以最大化目标和背景之间的差异,从而为快照中的高对比度显微成像开辟了新途径。
更新日期:2020-05-01
down
wechat
bug