当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved Basis-Set Incompleteness Potentials for Accurate Density-Functional Theory Calculations in Large Systems.
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2020-05-29 , DOI: 10.1021/acs.jctc.0c00102
A Otero-de-la-Roza 1 , Gino A DiLabio 2, 3
Affiliation  

The accurate calculation of chemical properties using density-functional theory (DFT) requires the use of a nearly complete basis set. In chemical systems involving hundreds to thousands of atoms, the cost of the calculations place practical limitations on the number of basis functions that can be used. Therefore, in most practical applications of DFT to large systems, there exists a basis-set incompleteness error (BSIE). In this article, we present the next iteration of the basis-set incompleteness potentials (BSIPs), one-electron potentials designed to correct for basis-set incompleteness error. The ultimate goal associated with the development of BSIPs is to allow the calculation of molecular properties using DFT with near-complete-basis-set results at a computational cost that is similar to a small basis set calculation. In this work, we develop BSIPs for 10 atoms in the first and second rows (H, B–F, Si–Cl) and 15 common basis sets of the Pople, Dunning, Karlsruhe, and Huzinaga types. Our new BSIPs are constructed to minimize BSIE in the calculation of reaction energies, barrier heights, noncovalent binding energies, and intermolecular distances. The BSIPs were obtained using a training set of 15 944 data points. The fitting approach employed a regularized linear least-squares method with variable selection (the LASSO method), which results in a much better fit to the training data than our previous BSIPs while, at the same time, reducing the computational cost of BSIP development. The proposed BSIPs are tested on various benchmark sets and demonstrate excellent performance in practice. Our new BSIPs are also transferable; i.e., they can be used to correct BSIE in calculations that employ density functionals other than the one used in the BSIP development (B3LYP). Finally, BSIPs can be used in any quantum chemistry program that have implemented effective-core potentials without changes to the software.

中文翻译:

大型系统中用于精确密度函数理论计算的改进的基集不完备电位。

使用密度泛函理论(DFT)准确计算化学性质需要使用几乎完整的基础集。在涉及成百上千个原子的化学系统中,计算成本实际上限制了可以使用的基函数的数量。因此,在DFT应用于大型系统的大多数实际应用中,都会存在基集不完整误差(BSIE)。在本文中,我们介绍了基集不完整电势(BSIP)的下一次迭代,这是一种电子电势,用于校正基集不完整电势。与BSIP的开发相关的最终目标是允许使用DFT进行分子性质的计算,并具有接近完全基础集的结果,其计算成本类似于小基础集的计算。在这项工作中 我们为第一排和第二排(H,B-F,Si-Cl)中的10个原子以及Pople,Dunning,Karlsruhe和Huzinaga类型的15个通用基集开发了BSIP。我们的新BSIP旨在在计算反应能,势垒高度,非共价结合能和分子间距离时最小化BSIE。使用15 944个数据点的训练集获得了BSIP。拟合方法采用带变量选择的正则化线性最小二乘法(LASSO方法),这比我们以前的BSIP更适合训练数据,同时降低了BSIP开发的计算成本。提议的BSIP在各种基准集上进行了测试,并在实践中展示了出色的性能。我们的新BSIP也可以转让;即 在使用密度函数而不是BSIP开发(B3LYP)中使用的密度函数的计算中,它们可以用于校正BSIE。最终,BSIP可以在实现了有效核心电势的任何量子化学程序中使用,而无需更改软件。
更新日期:2020-07-14
down
wechat
bug