当前位置: X-MOL 学术Cogn. Neurodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy features in spontaneous up and down oscillations
Cognitive Neurodynamics ( IF 3.1 ) Pub Date : 2020-05-29 , DOI: 10.1007/s11571-020-09597-3
Yihong Wang 1 , Xuying Xu 1 , Rubin Wang 1, 2
Affiliation  

Spontaneous brain activities consume most of the brain’s energy. So if we want to understand how the brain operates, we must take into account these spontaneous activities. Up and down transitions of membrane potentials are considered to be one of significant spontaneous activities. This kind of oscillation always shows bistable and bimodal distribution of membrane potentials. Our previous theoretical studies on up and down oscillations mainly looked at the ion channel dynamics. In this paper, we focus on energy feature of spontaneous up and down transitions based on a network model and its simulation. The simulated results indicate that the energy is a robust index and distinguishable of excitatory and inhibitory neurons. Meanwhile, one the whole, energy consumption of neurons shows bistable feature and bimodal distribution as well as the membrane potential, which turns out that the indicator of energy consumption encodes up and down states in this spontaneous activity. In detail, energy consumption mainly occurs during up states temporally, and mostly concentrates inside neurons rather than synapses spatially. The stimulation related energy is small, indicating that energy consumption is not driven by external stimulus, but internal spontaneous activity. This point of view is also consistent with brain imaging results. Through the observation and analysis of the findings, we prove the validity of the model again, and we can further explore the energy mechanism of more spontaneous activities.



中文翻译:

自发上下振荡的能量特征

自发的大脑活动消耗了大脑的大部分能量。因此,如果我们想了解大脑是如何运作的,就必须考虑这些自发活动。膜电位的上下转换被认为是重要的自发活动之一。这种振荡总是表现出膜电位的双稳态和双峰分布。我们之前关于上下振荡的理论研究主要着眼于离子通道动力学。在本文中,我们关注基于网络模型及其模拟的自发上下跃迁的能量特征。模拟结果表明,能量是一个稳健的指标,可以区分兴奋性和抑制性神经元。同时,一个整体,神经元的能量消耗表现出双稳态特征和双峰分布以及膜电位,结果表明能量消耗指标编码了这种自发活动的上下状态。具体来说,能量消耗主要发生在时间上的上升状态,并且主要集中在神经元内部,而不是空间上的突触。刺激相关能量较小,说明能量消耗不是由外部刺激驱动,而是由内部自发活动驱动。这一观点也与脑成像结果一致。通过对研究结果的观察和分析,再次证明了模型的有效性,可以进一步探索更多自发活动的能量机制。结果表明,能量消耗指标编码了这种自发活动中的上下状态。具体来说,能量消耗主要发生在时间上的上升状态,并且主要集中在神经元内部,而不是空间上的突触。刺激相关能量较小,说明能量消耗不是由外部刺激驱动,而是由内部自发活动驱动。这一观点也与脑成像结果一致。通过对研究结果的观察和分析,再次证明了模型的有效性,可以进一步探索更多自发活动的能量机制。结果表明,能量消耗指标编码了这种自发活动中的上下状态。具体来说,能量消耗主要发生在时间上的上升状态,并且主要集中在神经元内部,而不是空间上的突触。刺激相关能量较小,说明能量消耗不是由外部刺激驱动,而是由内部自发活动驱动。这一观点也与脑成像结果一致。通过对研究结果的观察和分析,再次证明了模型的有效性,可以进一步探索更多自发活动的能量机制。表明能量消耗不是由外部刺激驱动的,而是由内部自发活动驱动的。这一观点也与脑成像结果一致。通过对研究结果的观察和分析,再次证明了模型的有效性,可以进一步探索更多自发活动的能量机制。表明能量消耗不是由外部刺激驱动的,而是由内部自发活动驱动的。这一观点也与脑成像结果一致。通过对研究结果的观察和分析,再次证明了模型的有效性,可以进一步探索更多自发活动的能量机制。

更新日期:2020-05-29
down
wechat
bug