当前位置: X-MOL 学术Microbiome › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alterations of gut microbiome accelerate multiple myeloma progression by increasing the relative abundances of nitrogen-recycling bacteria.
Microbiome ( IF 15.5 ) Pub Date : 2020-05-28 , DOI: 10.1186/s40168-020-00854-5
Xingxing Jian 1, 2, 3 , Yinghong Zhu 2 , Jian Ouyang 3 , Yihui Wang 2 , Qian Lei 2 , Jiliang Xia 2 , Yongjun Guan 2 , Jingyu Zhang 2 , Jiaojiao Guo 2 , Yanjuan He 1 , Jinuo Wang 4 , Jian Li 4 , Jingchao Lin 5 , Mingming Su 5 , Guancheng Li 2 , Minghua Wu 2 , Lugui Qiu 6 , Juanjuan Xiang 2 , Lu Xie 3 , Wei Jia 7 , Wen Zhou 1, 2
Affiliation  

Gut microbiome alterations are closely related to human health and linked to a variety of diseases. Although great efforts have been made to understand the risk factors for multiple myeloma (MM), little is known about the role of the gut microbiome and alterations of its metabolic functions in the development of MM. Here, in a cohort of newly diagnosed patients with MM and healthy controls (HCs), significant differences in metagenomic composition were discovered, for the first time, with higher bacterial diversity in MM. Specifically, nitrogen-recycling bacteria such as Klebsiella and Streptococcus were significantly enriched in MM. Also, the bacteria enriched in MM were significantly correlated with the host metabolome, suggesting strong metabolic interactions between microbes and the host. In addition, the MM-enriched bacteria likely result from the regulation of urea nitrogen accumulated during MM progression. Furthermore, by performing fecal microbiota transplantation (FMT) into 5TGM1 mice, we proposed a mechanistic explanation for the interaction between MM-enriched bacteria and MM progression via recycling urea nitrogen. Further experiments validated that Klebsiella pneumoniae promoted MM progression via de novo synthesis of glutamine in mice and that the mice fed with glutamine-deficient diet exhibited slower MM progression. Overall, our findings unveil a novel function of the altered gut microbiome in accelerating the malignant progression of MM and open new avenues for novel treatment strategies via manipulation of the intestinal microbiota of MM patients.

中文翻译:

肠道微生物组的改变通过增加氮循环细菌的相对丰度来加速多发性骨髓瘤的发展。

肠道微生物组的改变与人类健康密切相关,并与多种疾病有关。尽管已经做出了巨大的努力来了解多发性骨髓瘤(MM)的危险因素,但对肠道微生物组的作用及其代谢功能在MM发生中的改变知之甚少。在这里,在一群新近诊断为MM和健康对照(HCs)的患者中,首次发现宏基因组组成存在显着差异,且MM中细菌多样性更高。具体而言,氮回收细菌(如克雷伯菌和链球菌)的MM含量显着增加。而且,富含MM的细菌与宿主代谢组显着相关,表明微生物与宿主之间存在强新陈代谢作用。此外,富含MM的细菌可能是由于MM进展过程中积累的尿素氮的调节所致。此外,通过对5TGM1小鼠进行粪便微生物菌群移植(FMT),我们提出了通过回收尿素氮来富集MM细菌与MM进展之间相互作用的机制解释。进一步的实验证实,肺炎克雷伯氏菌通过从头合成谷氨酰胺促进了小鼠的MM进展,并且饲喂谷氨酰胺缺乏饮食的小鼠表现出较慢的MM进展。总体而言,我们的发现揭示了肠道微生物组改变在加速MM恶性进展方面的新功能,并通过操纵MM患者的肠道菌群为新型治疗策略开辟了新途径。通过对5TGM1小鼠进行粪便微生物菌群移植(FMT),我们提出了通过回收尿素氮来富集MM细菌和MM进展之间相互作用的机制解释。进一步的实验证实,肺炎克雷伯氏菌通过从头合成谷氨酰胺促进了小鼠的MM进展,并且饲喂谷氨酰胺缺乏饮食的小鼠表现出较慢的MM进展。总体而言,我们的发现揭示了肠道微生物组改变在加速MM恶性进展方面的新功能,并通过操纵MM患者的肠道菌群为新型治疗策略开辟了新途径。通过对5TGM1小鼠进行粪便微生物菌群移植(FMT),我们提出了通过回收尿素氮来富集MM细菌和MM进展之间相互作用的机制解释。进一步的实验证实,肺炎克雷伯氏菌通过从头合成谷氨酰胺促进了小鼠的MM进展,而饲喂谷氨酰胺缺乏饮食的小鼠表现出较慢的MM进展。总体而言,我们的发现揭示了肠道微生物组改变在加速MM恶性进展中的新功能,并通过操纵MM患者的肠道菌群为新型治疗策略开辟了新途径。进一步的实验证实,肺炎克雷伯氏菌通过从头合成谷氨酰胺促进了小鼠的MM进展,并且饲喂谷氨酰胺缺乏饮食的小鼠表现出较慢的MM进展。总体而言,我们的发现揭示了肠道微生物组改变在加速MM恶性进展方面的新功能,并通过操纵MM患者的肠道菌群为新型治疗策略开辟了新途径。进一步的实验证实,肺炎克雷伯氏菌通过从头合成谷氨酰胺促进了小鼠的MM进展,并且饲喂谷氨酰胺缺乏饮食的小鼠表现出较慢的MM进展。总体而言,我们的发现揭示了肠道微生物组改变在加速MM恶性进展方面的新功能,并通过操纵MM患者的肠道菌群为新型治疗策略开辟了新途径。
更新日期:2020-05-28
down
wechat
bug