当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The biological effect of 2.45 GHz microwaves on the viability and permeability of bacterial and yeast cells
Journal of Applied Physics ( IF 2.7 ) Pub Date : 2020-05-29 , DOI: 10.1063/1.5145009
Evans K. Ahortor 1 , Dmitry Malyshev 1 , Catrin F. Williams 2 , Heungjae Choi 2 , Jonathan Lees 2 , Adrian Porch 2 , Les Baillie 1
Affiliation  

Microwaves are a form of non-ionizing radiation composed of electric (E) and magnetic (H) fields and are absorbed by biological tissues with a high water content. Our study investigated the effect of the E field, H field, and a combination of both (E + H) field’s exposure of structurally diverse micro-organisms, at a frequency of 2.45 GHz. We observed that the exposure to a microwave E field of an amplitude of 9.3 kV/m had no significant effect on cell viability; however, it did increase membrane permeability of Mycobacterium smegmatis to propidium iodide and to a range of different sized dextran particles in Escherichia coli, Staphylococcus aureus, Candida albicans, and M. smegmatis. The permeability of propidium iodide was observed in microwave treated cells (M. smegmatis) but not in heat-treated cells. Permeability of 3 kDa sized fluorescently labeled dextrans was observed across all cell types; however, this was found not to be the case for larger 70 kDa dextran particles. In terms of efflux, DNA was detected following E field exposure of M. smegmatis. In contrast, H field exposure had no effect on cell viability and did not contribute to increase cell’s membrane to dextran particles. In conclusion, this study shows that microwave generated E fields can temporarily disrupt membrane integrity without detrimentally impacting on cell viability. This approach has the potential to be developed as a high efficiency electropermeabilization method and as a means of releasing host DNA to support diagnostic applications.

中文翻译:

2.45 GHz 微波对细菌和酵母细胞活力和渗透性的生物效应

微波是一种由电场 (E) 和磁场 (H) 组成的非电离辐射形式,可被含水量高的生物组织吸收。我们的研究调查了 E 场、H 场以及 (E + H) 场的组合在 2.45 GHz 频率下对结构多样的微生物的暴露的影响。我们观察到,暴露于幅度为 9.3 kV/m 的微波电场对细胞活力没有显着影响;然而,它确实增加了耻垢分枝杆菌对碘化丙啶和大肠杆菌、金黄色葡萄球菌、白色念珠菌和耻垢分枝杆菌中一系列不同大小的葡聚糖颗粒的膜渗透性。在微波处理的细胞(耻垢分枝杆菌)中观察到碘化丙锭的渗透性,但在热处理的细胞中未观察到。在所有细胞类型中均观察到 3 kDa 大小的荧光标记葡聚糖的渗透性;然而,发现较大的 70 kDa 葡聚糖颗粒并非如此。在流出方面,在耻垢分枝杆菌的 E 场暴露后检测到 DNA。相比之下,H 场暴露对细胞活力没有影响,也不会增加细胞膜为葡聚糖颗粒。总之,这项研究表明,微波产生的电场可以暂时破坏膜的完整性,而不会对细胞活力产生不利影响。这种方法有可能被开发为一种高效的电透化方法和一种释放宿主 DNA 以支持诊断应用的手段。在流出方面,在耻垢分枝杆菌的 E 场暴露后检测到 DNA。相比之下,H 场暴露对细胞活力没有影响,也不会增加细胞膜为葡聚糖颗粒。总之,这项研究表明,微波产生的电场可以暂时破坏膜的完整性,而不会对细胞活力产生不利影响。这种方法有可能被开发为一种高效的电透化方法和一种释放宿主 DNA 以支持诊断应用的手段。在流出方面,在耻垢分枝杆菌的 E 场暴露后检测到 DNA。相比之下,H 场暴露对细胞活力没有影响,也不会增加细胞膜为葡聚糖颗粒。总之,这项研究表明,微波产生的电场可以暂时破坏膜的完整性,而不会对细胞活力产生不利影响。这种方法有可能被开发为一种高效的电透化方法和一种释放宿主 DNA 以支持诊断应用的手段。这项研究表明,微波产生的电场可以暂时破坏膜的完整性,而不会对细胞活力产生不利影响。这种方法有可能被开发为一种高效的电透化方法和一种释放宿主 DNA 以支持诊断应用的手段。这项研究表明,微波产生的电场可以暂时破坏膜的完整性,而不会对细胞活力产生不利影响。这种方法有可能被开发为一种高效的电透化方法和一种释放宿主 DNA 以支持诊断应用的手段。
更新日期:2020-05-29
down
wechat
bug