当前位置: X-MOL 学术Biomolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Architectural Dynamics of the Bacterial Flagellar Motor Switch.
Biomolecules ( IF 5.5 ) Pub Date : 2020-05-29 , DOI: 10.3390/biom10060833
Shahid Khan 1
Affiliation  

The rotary bacterial flagellar motor is remarkable in biochemistry for its highly synchronized operation and amplification during switching of rotation sense. The motor is part of the flagellar basal body, a complex multi-protein assembly. Sensory and energy transduction depends on a core of six proteins that are adapted in different species to adjust torque and produce diverse switches. Motor response to chemotactic and environmental stimuli is driven by interactions of the core with small signal proteins. The initial protein interactions are propagated across a multi-subunit cytoplasmic ring to switch torque. Torque reversal triggers structural transitions in the flagellar filament to change motile behavior. Subtle variations in the core components invert or block switch operation. The mechanics of the flagellar switch have been studied with multiple approaches, from protein dynamics to single molecule and cell biophysics. The architecture, driven by recent advances in electron cryo-microscopy, is available for several species. Computational methods have correlated structure with genetic and biochemical databases. The design principles underlying the basis of switch ultra-sensitivity and its dependence on motor torque remain elusive, but tantalizing clues have emerged. This review aims to consolidate recent knowledge into a unified platform that can inspire new research strategies.

中文翻译:

细菌鞭毛马达开关的结构动力学。

旋转细菌鞭毛马达在旋转感应切换过程中具有高度同步的操作和放大作用,因此在生物化学领域非常出众。运动是鞭毛基体的一部分,鞭毛基体是复杂的多蛋白组装体。感官和能量转导依赖于六个蛋白质的核心,这些蛋白质可以适应不同的物种,从而调节扭矩并产生各种开关。运动对趋化和环境刺激的反应是由核心与小信号蛋白的相互作用驱动的。最初的蛋白质相互作用跨多亚基胞质环传播以切换扭矩。扭转扭矩会触发鞭毛细丝的结构转变,从而改变运动行为。核心组件的细微变化会反转或阻止开关操作。从蛋白质动力学到单分子和细胞生物物理学,已经用多种方法研究了鞭毛开关的机制。由电子冷冻显微镜的最新进展驱动的架构可用于多种物种。计算方法具有与遗传和生化数据库相关的结构。开关超灵敏性基础及其对电动机转矩的依赖关系的设计原理仍然难以捉摸,但已经出现了诱人的线索。这篇综述旨在将最新知识整合到一个可以激发新研究策略的统一平台中。计算方法具有与遗传和生化数据库相关的结构。开关超灵敏性基础及其对电动机转矩的依赖性所依据的设计原理仍然难以捉摸,但已经出现了诱人的线索。这篇综述旨在将最新知识整合到一个可以激发新研究策略的统一平台中。计算方法具有与遗传和生化数据库相关的结构。开关超灵敏性基础及其对电动机转矩的依赖关系的设计原理仍然难以捉摸,但已经出现了诱人的线索。这篇综述旨在将最新知识整合到一个可以激发新研究策略的统一平台中。
更新日期:2020-05-29
down
wechat
bug