当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CNT-Assembled Octahedron Carbon-Encapsulated Cu3P/Cu Heterostructure by In Situ MOF-Derived Engineering for Superior Lithium Storage: Investigations by Experimental Implementation and First-Principles Calculation.
Advanced Science ( IF 14.3 ) Pub Date : 2020-05-29 , DOI: 10.1002/advs.202000736
Jia Lin 1 , Chenghui Zeng 2 , Xiaoming Lin 1 , Chao Xu 1 , Cheng-Yong Su 3
Affiliation  

Conspicuously, metal–organic frameworks (MOFs) serve as homogenously and periodically atom‐dispersed self‐sacrificial template for in situ engineering of hierarchical porous carbon‐encapsulated micro/nanoheterostructure materials, integrating the merits of micro/nanostructure to high‐volumetric energy storage. Copper phosphide represents a promising candidate due to its compact material density compared to commercial graphite. Herein, micro/nanostructured Cu3P/Cu encapsulated by carbon‐nanotube‐assembled hierarchical octahedral carbonaceous matrix (Cu3P/Cu@CNHO) is constructed by an in situ MOF‐derived engineering for novel anode material in LIBs, which achieves an extraordinary cycling stability (a well‐maintained gravimetric/volumetric capacity of 463.2 mAh g−1/1878.4 mAh cm−3 at 1 A g−1 up to 1600 cycles) and distinguished rate capability (an ameliorated capacity of 317.7 mAh g−1 even at 10 A g−1), together with unprecedented heat‐resistant capability (an elevated temperature of 50 °C for 1000 cycles maintaining 434.7 mAh g−1 at 0.5 A g−1). The superior electrochemical performance of Cu3P/Cu@CNHO is credited to the large specific surface area, conductive carbon matrix and metallic copper dopants, synergistic effects of the intrinsic Cu3P/Cu heterostructure, and well‐defined micro/nanostructure, facilitating a boosted electrochemical conductivity and accelerated diffusion kinetics.

中文翻译:

通过原位 MOF 衍生工程制备 CNT 组装八面体碳封装 Cu3P/Cu 异质结构,实现卓越的锂存储:通过实验实施和第一性原理计算进行研究。

值得注意的是,金属有机框架(MOF)作为均匀且周期性的原子分散自牺牲模板,用于分级多孔碳封装微/纳米异质结构材料的原位工程,将微/纳米结构的优点与大容量储能相结合。与商用石墨相比,磷化铜具有致密的材料密度,因此是一种有前途的候选者。在此,通过原位MOF衍生工程构建了由碳纳米管组装的分层八面体碳质基体封装的微/纳米结构Cu 3 P/Cu(Cu 3 P/Cu@CNHO),用于LIB中的新型阳极材料,实现了非凡的循环稳定性(在 1 A g -1下循环 1600 次时,重量/体积容量保持良好,为 463.2 mAh g -1 /1878.4 mAh cm -3 )和卓越的倍率性能(甚至改善了 317.7 mAh g -1的容量) 10 A g -1),以及前所未有的耐热能力(在 50 °C 高温下进行 1000 次循环,在 0.5 A g -1下保持 434.7 mAh g -1)。Cu 3 P/Cu@CNHO的优异电化学性能归功于大的比表面积、导电碳基体和金属铜掺杂剂、本征Cu 3 P/Cu异质结构的协同效应以及明确的微/纳米结构,促进增强的电化学电导率和加速的扩散动力学。
更新日期:2020-07-22
down
wechat
bug