当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling the damping response of biomimetic foams based on pomelo fruit
Computational Materials Science ( IF 3.1 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.commatsci.2020.109801
I. Schäfer , M. Mlikota , S. Schmauder , U. Weber

Abstract Some sorts of fruits, like pomelo (Citrus maxima or Citrus grandis), also spelled pummelo, are of special interest for researchers and engineers during the development of impact resistant structures. It is assumed that the interaction of structural features on different length-scales of such fruits enables the dissipation of large amounts of energy during their impact against a hard surface. Accordingly, the aim of this paper is to perform an analysis by using a numerical model at different hierarchical levels by means of Finite Element Methods (FEM) in order to identify different structural features that contribute to the damping performance of the pomelo fruit. The considered numerical model was created on the basis of homogeneous aluminum (AlSi7Mg0.3) foam structure, inspired by the pomelo fruit shell structure. In the present approach, the Si- or Fe-rich intermetallic particles on the struts of AlSi7Mg0.3 foam are considered additionally, this enabled more detailed investigations on the structural behavior of the foam during different loading conditions. Comparison of the results from simulation and experimental compression tests showed promising results with respect to the deformation behavior, which are offering support to the design of biomimetic metallic foams. Understanding the principles of combining the structure and material inspired by biological systems enables constructing new lightweight bio-inspired materials of high impact and puncture resistance with a combination of high-energy dissipation, high damping properties and a significant recovery from large deformations.

中文翻译:

基于柚子的仿生泡沫阻尼响应建模

摘要 某些种类的水果,如柚子(Citrus maxima 或 Citrus grandis),也拼写为 pummelo,在抗冲击结构的开发过程中受到研究人员和工程师的特别关注。假设这些水果不同长度尺度上的结构特征的相互作用能够在它们撞击硬表面时耗散大量能量。因此,本文的目的是通过有限元方法 (FEM) 使用不同层次级别的数值模型进行分析,以确定有助于柚子果实阻尼性能的不同结构特征。所考虑的数值模型是在均质铝 (AlSi7Mg0.3) 泡沫结构的基础上创建的,其灵感来自柚子果壳结构。在目前的方法中,另外还考虑了 AlSi7Mg0.3 泡沫支柱上的富硅或富铁金属间化合物颗粒,这使得可以对不同负载条件下泡沫的结构行为进行更详细的研究。模拟和实验压缩测试结果的比较显示了变形行为方面的有希望的结果,这为仿生金属泡沫的设计提供了支持。了解受生物系统启发而将结构和材料相结合的原理,可以构建具有高抗冲击性和抗穿刺性的新型轻质仿生材料,并结合了高耗能、高阻尼特性和大变形的显着恢复。另外还考虑了 3 泡沫,这使得对不同负载条件下泡沫的结构行为进行更详细的研究成为可能。模拟和实验压缩测试结果的比较显示了变形行为方面的有希望的结果,这为仿生金属泡沫的设计提供了支持。了解受生物系统启发而将结构和材料相结合的原理,可以构建具有高抗冲击性和抗穿刺性的新型轻质仿生材料,并结合了高耗能、高阻尼特性和大变形的显着恢复。另外还考虑了 3 泡沫,这使得对不同负载条件下泡沫的结构行为进行更详细的研究成为可能。模拟和实验压缩测试结果的比较显示了变形行为方面的有希望的结果,这为仿生金属泡沫的设计提供了支持。了解受生物系统启发而将结构和材料相结合的原理,可以构建具有高抗冲击性和抗穿刺性的新型轻质仿生材料,并结合了高耗能、高阻尼特性和大变形的显着恢复。模拟和实验压缩测试结果的比较显示了变形行为方面的有希望的结果,这为仿生金属泡沫的设计提供了支持。了解受生物系统启发而将结构和材料相结合的原理,可以构建具有高抗冲击性和抗穿刺性的新型轻质仿生材料,并结合了高耗能、高阻尼特性和大变形的显着恢复。模拟和实验压缩测试结果的比较显示了变形行为方面的有希望的结果,这为仿生金属泡沫的设计提供了支持。了解受生物系统启发而将结构和材料相结合的原理,可以构建具有高抗冲击性和抗穿刺性的新型轻质仿生材料,并结合了高耗能、高阻尼特性和大变形的显着恢复。
更新日期:2020-10-01
down
wechat
bug