当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Three-Dimensional Photonic–Plasmonic Photoconductive Switches for Picosecond THz Pulses
ACS Photonics ( IF 6.5 ) Pub Date : 2020-05-28 , DOI: 10.1021/acsphotonics.0c00044
Giorgos Georgiou 1, 2 , Clément Geffroy 2 , Christopher Bäuerle 2 , Jean-François Roux 1
Affiliation  

The efficiency of photoconductive switches, which continue to be used for the generation and detection of THz waves, has been overlooked for a long time. The so far “optics-dominated” devices are making their way through to new and emerging fields of research that require ultrafast picosecond voltage pulses, as well as to new applications where power efficiency is of uttermost importance. To address the efficiency problems, in this Article we present a novel photoconductive switch that is based on a three-dimensional design. In contrast to conventional planar designs, our photoconductive switch drastically enhances the overall efficiency by maximizing the laser absorption within the device, while at the same time optimizing the carrier collection efficiency at the electrodes. To maximize the optical absorption, we take advantage of photonic and plasmonic modes that are excited in our device due to a periodic array of nanopillars, whereas the collection efficiency is optimized by converting each nanopillar into a single nano-photoconductive switch. Our numerical calculations show a 50-fold increase in the overall generated current and a 5-fold bandwidth increase compared to traditional interdigitated planar photoconductive switches. This opens up a wealth of new possibilities in quantum science and technology where efficient low power devices are indispensable.

中文翻译:

皮秒太赫兹脉冲的高效三维光子-等离子体光电导开关

长期以来一直被忽视的光电导开关的效率一直被用来产生和检测太赫兹波。迄今为止,“光学主导”设备正在进入需要超快速皮秒电压脉冲的新兴研究领域,以及功率效率至关重要的新应用。为了解决效率问题,在本文中,我们提出了一种基于三维设计的新型光电导开关。与传统的平面设计相比,我们的光电导开关通过最大化设备内的激光吸收率而极大地提高了整体效率,同时优化了电极上的载流子收集效率。为了最大程度地吸收光,我们利用由于纳米柱的周期性排列而在我们的设备中激发的光子和等离子体模式,而通过将每个纳米柱转换为单个纳米光电导开关来优化收集效率。我们的数值计算表明,与传统的叉指式平面光电导开关相比,总产生电流增加了50倍,带宽增加了5倍。这为量子科学和技术开辟了许多新的可能性,而高效的低功耗设备是必不可少的。我们的数值计算表明,与传统的叉指式平面光电导开关相比,总产生电流增加了50倍,带宽增加了5倍。这为量子科学和技术开辟了许多新的可能性,而高效的低功耗设备是必不可少的。我们的数值计算表明,与传统的叉指式平面光电导开关相比,总产生电流增加了50倍,带宽增加了5倍。这为量子科学和技术开辟了许多新的可能性,而高效的低功耗设备是必不可少的。
更新日期:2020-05-28
down
wechat
bug