当前位置: X-MOL 学术Sci. Hortic. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated metabolomic and transcriptomic analyses reveal differences in the biosynthetic pathway of anthocyanins in Fragaria nilgerrensis and Fragaria pentaphylla
Scientia Horticulturae ( IF 4.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.scienta.2020.109476
Jincheng Shen , Wanlu Shao , Zhaokui Du , Hongfei Lu , Junmin Li

Abstract Anthocyanins, which commonly exist in fruits, have substantial benefits for human health. Fragaria nilgerrensis and F. pentaphylla are two species of wild strawberry with white and red fruits, respectively. To understand the molecular mechanism that underlies the biosynthesis of anthocyanins in strawberry, combined analyses of transcriptomics and metabolomics were conducted between the two species of Fragaria to compare the anthocyanin component and the biosynthetic pathway. A total of 26 anthocyanins were obtained in both of the species. Cyanidin 3-O-glucoside chloride, cyanidin 3-galactoside, and cyanidin 3-glucoside were the major anthocyanins in F. nilgerrensis and F. pentaphylla. The content of most of the anthocyanin components in F. pentaphylla was higher than those in F. nilgerrensis. No glycoside pelargonidin was detected in the white fruits of F. nilgerrensis, revealing that the anthocyanins underlie the white mutation. Transcriptomic analysis revealed that the expression of almost all the anthocyanin structural genes and transcription factors genes MYB10 and MYB1 in the fruits of F. pentaphylla was up-regulated compared with those in the fruits of F. nilgerrensis. The results indicate that three structural genes, including chalcone synthase, dihydroflavonol reductase, and UDP-glucose: flavonol 3-O-glucosyltransferaseare likely to be the candidate genes related to anthocyanin biosynthesis in the two species of Fragaria. In addition, the lack of pelargonidin might be due to the block of transformation catalyzed by leucoanthocyanidin dioxygenase or UDP-glucose flavonoid glucosyl transferase.

中文翻译:

综合代谢组学和转录组学分析揭示了草莓和五叶草莓中花青素生物合成途径的差异

摘要 花青素通常存在于水果中,对人体健康具有重大益处。Fragaria nilgerrensis 和 F. pentaphylla 是两种野草莓,分别有白色和红色的果实。为了了解草莓中花青素生物合成的分子机制,对两种草莓进行了转录组学和代谢组学的联合分析,以比较花青素成分和生物合成途径。在这两个物种中总共获得了 26 种花青素。花青素 3-O-氯化葡萄糖苷、花青素 3-半乳糖苷和花青素 3-葡萄糖苷是 F. nilgerrensis 和 F. pentaphylla 中的主要花青素。F. pentaphylla 中大部分花青素成分的含量高于 F. nilgerrensis。在 F. nilgerrensis 的白色果实中未检测到天竺葵苷,表明花青素是白色突变的基础。转录组学分析表明,五叶木果实中几乎所有花青素结构基因和转录因子基因MYB10和MYB1的表达量均高于尼尔格氏木。结果表明,查耳酮合酶、二氢黄酮醇还原酶和UDP-葡萄糖3个结构基因:黄酮醇3-O-葡萄糖基转移酶可能是2种草莓中与花色苷生物合成相关的候选基因。此外,天竺葵素的缺乏可能是由于无色花青素双加氧酶或UDP-葡萄糖类黄酮葡萄糖基转移酶催化的转化受阻。揭示花青素是白色突变的基础。转录组学分析表明,五叶木果实中几乎所有花青素结构基因和转录因子基因MYB10和MYB1的表达量均高于尼尔格氏木。结果表明,查耳酮合酶、二氢黄酮醇还原酶和UDP-葡萄糖3个结构基因:黄酮醇3-O-葡萄糖基转移酶可能是2种草莓中与花色苷生物合成相关的候选基因。此外,天竺葵素的缺乏可能是由于无色花青素双加氧酶或UDP-葡萄糖类黄酮葡萄糖基转移酶催化的转化受阻。揭示花青素是白色突变的基础。转录组学分析表明,五叶木果实中几乎所有花青素结构基因和转录因子基因MYB10和MYB1的表达量均高于尼尔格氏木。结果表明,查耳酮合酶、二氢黄酮醇还原酶和UDP-葡萄糖3个结构基因:黄酮醇3-O-葡萄糖基转移酶可能是2种草莓中与花色苷生物合成相关的候选基因。此外,天竺葵素的缺乏可能是由于无色花青素双加氧酶或UDP-葡萄糖类黄酮葡萄糖基转移酶催化的转化受阻。转录组学分析表明,五叶木果实中几乎所有花青素结构基因和转录因子基因MYB10和MYB1的表达量均高于尼尔格氏木。结果表明,查耳酮合酶、二氢黄酮醇还原酶和UDP-葡萄糖3个结构基因:黄酮醇3-O-葡萄糖基转移酶可能是2种草莓中与花色苷生物合成相关的候选基因。此外,天竺葵素的缺乏可能是由于无色花青素双加氧酶或UDP-葡萄糖类黄酮葡萄糖基转移酶催化的转化受阻。转录组学分析表明,五叶木果实中几乎所有花青素结构基因和转录因子基因MYB10和MYB1的表达量均高于尼尔格氏木。结果表明,查耳酮合酶、二氢黄酮醇还原酶和UDP-葡萄糖3个结构基因:黄酮醇3-O-葡萄糖基转移酶可能是2种草莓中与花色苷生物合成相关的候选基因。此外,天竺葵素的缺乏可能是由于无色花青素双加氧酶或UDP-葡萄糖类黄酮葡萄糖基转移酶催化的转化受阻。尼尔格瑞斯。结果表明,查耳酮合酶、二氢黄酮醇还原酶和UDP-葡萄糖3个结构基因:黄酮醇3-O-葡萄糖基转移酶可能是2种草莓中与花色苷生物合成相关的候选基因。此外,天竺葵素的缺乏可能是由于无色花青素双加氧酶或UDP-葡萄糖类黄酮葡萄糖基转移酶催化的转化受阻。尼尔格瑞斯。结果表明,查耳酮合酶、二氢黄酮醇还原酶和UDP-葡萄糖3个结构基因:黄酮醇3-O-葡萄糖基转移酶可能是2种草莓中与花色苷生物合成相关的候选基因。此外,天竺葵素的缺乏可能是由于无色花青素双加氧酶或UDP-葡萄糖类黄酮葡萄糖基转移酶催化的转化受阻。
更新日期:2020-09-01
down
wechat
bug