当前位置: X-MOL 学术Microgravity Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of Two Gas Injection Methods for Generating Bubbles in a T-junction
Microgravity Science and Technology ( IF 1.3 ) Pub Date : 2020-05-28 , DOI: 10.1007/s12217-020-09790-3
S. Arias

In this work, we compare the performance of two different methods for generating bubbles in conditions relevant to microgravity. A T-junction formed by two cylindrical (1 mm of internal diameter) and perpendicular channels is used to generate trains of non-wetting bubbles. Air and distilled water are used as dispersed and continuous phases, respectively. The difference between both methods lies in the strategy used to inject the fluids. In one case (here referred to as TJ-A configuration), the gas is injected into the side channel. In the other case (referred to as TJ-B), the gas is injected into the main channel. Bubble size dispersion is analyzed and quantified with the polydispersity index. The increase of the capillary number (based on the continuous phase) has shown a strong influence on the regularity of the bubble generation process. The TJ-A method can produce monodisperse bubbles at higher capillary numbers than configuration TJ-B. The limits of monodispersity, as far as the capillary number is concerned, are studied. These limits determine the optimal operating range of the T-junction for generating highly monodisperse bubbles. Beyond these limits, polydispersity increases, although much more abruptly in TJ-B than in TJ-A. The bubble generation frequency is also studied, with special attention to the two main regimes that characterize the frequency, i.e. the linear regime (at very low gas flow rate) and the saturation regime (at high gas flow rates). A new dimensionless expression of the bubble generation frequency is proposed in this work.

中文翻译:

两种在T型接头中产生气泡的注气方法的比较

在这项工作中,我们比较了在与微重力有关的条件下产生气泡的两种不同方法的性能。由两个圆柱(内径为1毫米)和垂直通道形成的T形结用于生成一系列不润湿的气泡。空气和蒸馏水分别用作分散相和连续相。两种方法之间的差异在于用于注入流体的策略。在一种情况下(此处称为TJ-A配置),气体被注入到侧通道中。在另一种情况下(称为TJ-B),气体被注入主通道。气泡大小的分散度通过多分散性指数进行分析和定量。毛细管数的增加(基于连续相)已显示出对气泡生成过程规律性的强烈影响。TJ-A方法可以产生比配置TJ-B高的毛细管数的单分散气泡。就毛细管数而言,研究了单分散性的极限。这些限制确定了用于生成高度单分散气泡的T型结的最佳操作范围。超出这些限制,虽然TJ-B中的多分散性比TJ-A中的多得多,但分散性却增加了。还研究了气泡产生频率,并特别注意表征频率的两个主要状态,即线性状态(在非常低的气体流量下)和饱和状态(在较高的气体流量下)。在这项工作中提出了气泡产生频率的新的无量纲表达。就毛细管数而言,进行了研究。这些限制确定了用于生成高度单分散气泡的T型结的最佳操作范围。超出这些限制,虽然TJ-B中的多分散性比TJ-A中的多得多,但分散性却增加了。还研究了气泡产生频率,并特别注意表征频率的两个主要状态,即线性状态(在非常低的气体流量下)和饱和状态(在较高的气体流量下)。在这项工作中提出了气泡产生频率的新的无量纲表达。就毛细管数而言,进行了研究。这些限制决定了产生高单分散气泡的T型结的最佳工作范围。超出这些限制,虽然TJ-B中的多分散性比TJ-A中的多得多,但分散性却增加了。还研究了气泡产生频率,并特别注意表征频率的两个主要状态,即线性状态(在非常低的气体流量下)和饱和状态(在较高的气体流量下)。在这项工作中提出了气泡产生频率的新的无量纲表达。还研究了气泡产生频率,并特别注意表征频率的两个主要状态,即线性状态(在非常低的气体流量下)和饱和状态(在较高的气体流量下)。在这项工作中提出了气泡产生频率的新的无量纲表达。还研究了气泡产生频率,并特别注意表征频率的两个主要状态,即线性状态(在非常低的气体流量下)和饱和状态(在较高的气体流量下)。在这项工作中提出了气泡产生频率的新的无量纲表达。
更新日期:2020-05-28
down
wechat
bug