当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantitative Linking of Nanoscale Interactions to Continuum-Scale Nanoparticle and Microplastic Transport in Environmental Granular Media.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-05-27 , DOI: 10.1021/acs.est.0c01172
William P Johnson 1
Affiliation  

Quantitative linkage of fundamental physicochemical characteristics to rate coefficients used in simulations of experimentally observed transport behaviors of nanoparticles and microplastics (colloids) in environmental granular media is an active area of research. Quantitative linkage is herein demonstrated for (i) colloids ranging from nano- to microscale; in two field-based granular media of contrasting grain size, (ii) natural fine sand at the column scale; and (ii) streambed-equilibrated commercial pea gravel at the field scale. Continuum-scale rate coefficients were linked to nanoscale interactions via mechanistic pore-scale colloid trajectory simulations that predicted and defined fast- and slow-attaching subpopulations, as well as nonattaching subpopulations that either remained in the near-surface pore water or re-entrained to bulk pore water. These subfractions of the classic collector efficiency were upscaled to continuum-scale rate coefficients that produced experimentally observed colloid breakthrough-elution concentration histories and nonexponential colloid distributions from the source. The simulations explained transition from hyperexponential to nonmonotonic colloid distributions from the source as driven accumulation of mobile near-surface colloids due to relatively strong secondary minimum interaction and weak diffusion for microscale colloids. The assumption of depletion of the fast-attaching colloid subpopulation by attachment to grain surfaces produced the experimentally observed contrasting distances across which nonexponential colloid distribution from the source occurred in the fine sand versus pea gravel. Rate coefficients were quantitatively calculated from physicochemical parameters and the following three fit parameters: (i) fractional coverage by nanoscale heterogeneity; (ii) efficiency of return to the near-surface domain; and (iii) in explicit simulations, characteristic velocity for scaling transfer to near-surface pore water.

中文翻译:

纳米级相互作用与连续颗粒级纳米颗粒和环境颗粒介质中的微塑料运输的定量链接。

基本的理化特性与速率系数的定量关联在环境颗粒介质中实验观察到的纳米颗粒和微塑料(胶体)的传输行为模拟中使用,是一个活跃的研究领域。本文证明了对(i)从纳米级到微米级的胶体的定量连接;在两种粒度不同的基于现场的粒状介质中,(ii)柱级的天然细砂;(ii)田间规模的河床平衡商业豌豆碎石。连续谱级速率系数通过机械孔尺度胶体轨迹模拟与纳米级相互作用相关联,该模拟预测并定义了快速和慢速连接的亚群,以及保留在近地表孔隙水中或重新夹带到大量孔隙水中的非附着亚群。这些经典收集器效率的细分被放大到连续尺度速率系数,该系数从源头上产生了实验观察到的胶体突破-洗脱浓度历史和非指数胶体分布。该模拟解释了源于从超指数到非单调胶体分布的转变,这是由于相对强的次要最小相互作用和微尺度胶体的较弱扩散而导致的移动近表面胶体的积累。通过附着在谷物表面上而使快速附着的胶体亚群耗竭的假设产生了实验观察到的对比距离,在该距离上,细砂岩与豌豆砾石中发生了来自源的非指数胶体分布。从理化参数和以下三个拟合参数定量计算速率系数:(i)纳米级异质性的覆盖率;(ii)返回近地表领域的效率;(iii)在显式模拟中,用于结垢转移到近地表孔隙水的特征速度。(ii)返回近地表领域的效率;(iii)在显式模拟中,特征尺度速度用于结垢转移至近地表孔隙水。(ii)返回近地表领域的效率;(iii)在显式模拟中,用于结垢转移到近地表孔隙水的特征速度。
更新日期:2020-07-07
down
wechat
bug