当前位置: X-MOL 学术bioRxiv. Plant Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Functional analysis of the teosinte branched 1 genes in the tetraploid switchgrass (Panicum virgatum L.) by CRISPR/Cas9-directed mutagenesis
bioRxiv - Plant Biology Pub Date : 2020-05-26 , DOI: 10.1101/2020.05.23.112961
Yang Liu , Weiling Wang , Bing Yang , Christopher Currey , Shui-zhang Fei

Tillering is an important biomass yield component trait in switchgrass (Panicum virgatum L.). Teosinte branched 1 (tb1)/Branched 1 (BRC1) gene is a known regulator for tillering/branching in several plant species; however, its role on tillering in switchgrass remains unknown. Here, we report physiological and molecular characterization of mutants created by CRISPR/Cas9. We successfully obtained non-chimeric Pvtb1a and Pvtb1b mutants from chimeric T0 mutants using nodal culture. The biallelic Pvtb1a-Pvtb1b mutant plants produced significantly more tillers and higher fresh weight biomass than the wild-type plants. The increased tiller production in the mutant plants resulted primarily from hastened outgrowth of lower axillary buds. Increased tillers were also observed in transgene-free T1 monoallelic mutants for either Pvtb1a-Pvtb1b or Pvtb1b gene alone, suggesting Pvtb1 genes act in a dosage-dependent manner. Transcriptome analysis showed 831 genes were differentially expressed in the Pvtb1a-Pvtb1b double knockdown mutant. Gene Ontology analysis revealed downregulation of Pvtb1 genes affected multiple biological processes, including transcription, flower development, cell differentiation, and stress/defense responses in edited plants. This study demonstrates that Pvtb1 genes play a pivotal role in tiller production as a negative regulator in switchgrass and provides opportunities for further research aiming to elucidate the molecular pathway regulating tillering in switchgrass.

中文翻译:

通过CRISPR / Cas9定向诱变对四倍体柳枝switch(Panicum virgatum L.)中teosinte分支1基因进行功能分析

分iller是柳枝((Panicum virgatum L.)的重要生物量产量构成特征。Teosinte分支1(tb1)/分支1(BRC1)基因是已知的几种植物分till /分支调节因子。然而,其在柳枝switch分till中的作用仍然未知。在这里,我们报告了由CRISPR / Cas9创建的突变体的生理和分子特征。我们使用节点培养成功地从嵌合T0突变体中获得了非嵌合Pvtb1a和Pvtb1b突变体。双等位基因Pvtb1a-Pvtb1b突变植物比野生型植物产生更多的分till和更高的鲜重生物量。突变植物中分till产量的增加主要是由于下部腋芽的快速生长所致。在无转基因的T1单等位基因突变体中,单独的Pvtb1a-Pvtb1b或Pvtb1b基因中也观察到分增加,表明Pvtb1基因以剂量依赖性方式起作用。转录组分析显示Pvtb1a-Pvtb1b双敲低突变体中有831个基因差异表达。基因本体分析表明,Pvtb1基因的下调影响了多个生物学过程,包括转录,花发育,细胞分化以及编辑植物中的胁迫/防御反应。这项研究表明,Pvtb1基因在switch草中作为负调节剂在分till生产中起着关键作用,并为阐明阐明switch草分till的分子途径提供了进一步研究的机会。转录组分析显示Pvtb1a-Pvtb1b双敲低突变体中有831个基因差异表达。基因本体分析表明,Pvtb1基因的下调影响了多个生物学过程,包括转录,花朵发育,细胞分化以及编辑植物中的胁迫/防御反应。这项研究表明,Pvtb1基因在switch草中作为负调节剂在分till生产中起着关键作用,并为阐明阐明switch草分till的分子途径提供了进一步研究的机会。转录组分析显示Pvtb1a-Pvtb1b双敲低突变体中有831个基因差异表达。基因本体分析表明,Pvtb1基因的下调影响了多个生物学过程,包括转录,花朵发育,细胞分化以及编辑植物中的胁迫/防御反应。这项研究表明,Pvtb1基因在switch草中作为负调节剂在分till生产中起着关键作用,并为阐明阐明switch草分till的分子途径提供了进一步研究的机会。以及编辑植物中的压力/防御反应。这项研究表明Pvtb1基因在switch草中作为负调节剂在分er生产中起着关键作用,并为阐明阐明switch草分till的分子途径提供了进一步的研究机会。以及编辑植物中的压力/防御反应。这项研究表明Pvtb1基因在switch草中作为负调节剂在分er生产中起着关键作用,并为阐明阐明switch草分till的分子途径提供了进一步的研究机会。
更新日期:2020-05-26
down
wechat
bug