当前位置: X-MOL 学术bioRxiv. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Collective protection and transport in entangled biological and robotic active matter
bioRxiv - Biophysics Pub Date : 2020-05-27 , DOI: 10.1101/2020.05.25.114736
Yasemin Ozkan-Aydin , Daniel I. Goldman , M. Saad Bhamla

Living systems at all scales aggregate in large numbers for a variety of functions including mating, predation, and survival. The majority of such systems consist of unconnected individuals that collectively flock, school or swarm. However some aggregations involve physically entangled individuals, which can confer emergent mechanofunctional material properties to the collective. Here we study in laboratory experiments and rationalize in theoretical and robotic models the dynamics of physically entangled and motile self-assemblies of centimeter long California blackworms (L. Variegatus). Thousands of individual worms form braids with their long, slender and flexible bodies to make a three-dimensional, soft and shape-shifting blob. The blob behaves as a living material capable of mitigating damage and assault from environmental stresses through dynamic shape transformations, including minimizing surface area for survival against desiccation and enabling transport (negative thermotaxis) from hazardous environments (like heat). We specifically focus on the locomotion of the blob to understand how an amorphous entangled ball of worms is able to break symmetry to move across a substrate. We hypothesize that the collective blob displays rudimentary differentiation of function across itself, which when combined with entanglement dynamics facilitates directed persistent blob locomotion. To test this, we develop robophysical blobs, which display emergent locomotion in the collective without sophisticated control or programming of any individual robot. The emergent dynamics of the living functional blob and robophysical model can inform the rational design of exciting new classes of adaptive mechanofunctional living materials and emergent swarm robotics.

中文翻译:

纠缠的生物和机器人活性物质的集体保护和运输

各种规模的生物系统都聚集在一起,以实现多种功能,包括交配,捕食和生存。这种系统的大多数由无联系的个体组成,它们聚集在一起,成群结队或成群结队。但是,某些聚合涉及物理上纠缠的个体,这可能使集体具有新出现的机械功能材料特性。在这里,我们在实验室实验中进行研究,并在理论模型和机器人模型中合理化了厘米长的加利福尼亚黑蠕虫(L. Variegatus)的物理缠结和运动自组装的动力学。成千上万的蠕虫以其细长,柔韧的身体形成辫子,从而形成三维,柔软且变形的斑点。斑点的行为是一种生命物质,它能够通过动态形状转换来减轻环境应力造成的破坏和攻击,包括最大程度地减少表面积以防止干燥,并能够从危险环境(例如热)中进行运输(负热出租车)。我们特别关注Blob的运动,以了解无定形纠缠的蠕虫球如何能够打破对称性而在基板上移动。我们假设,集体斑点在整个自身上显示出基本的功能差异,当与纠缠动力学结合使用时,可以促进定向的持久斑点运动。为了测试这一点,我们开发了机器人物理斑点,这些斑点在没有任何单个机器人的复杂控制或编程的情况下,在整体上显示了紧急运动。
更新日期:2020-05-27
down
wechat
bug