当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Visualization of Lithium Transfer Resistance in Secondary Particle Cathodes of Bulk-Type Solid-State Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2020-05-27 , DOI: 10.1021/acsenergylett.0c00942
Yuki Nomura 1 , Kazuo Yamamoto 2 , Tsukasa Hirayama 2, 3 , Emiko Igaki 1 , Koh Saitoh 3
Affiliation  

The rate capability of bulk-type solid-state Li-ion batteries is limited by the solid-state diffusion of Li ions in the cathodes that typically form micrometer-sized polycrystalline particles composed of aggregated nanocrystals. This necessitates nanoscale and dynamic observations of Li ions to establish a detailed understanding of Li conduction in the complicated particle structure. This study demonstrates Li-ion dynamics in particle cathodes under low- and high-rate charge–discharge reaction conditions using operando scanning transmission electron microscopy coupled with electron energy-loss spectroscopy. Direct observation results reveal the slow diffusion through nanocrystal grain boundaries as the primary factor limiting Li conduction in particle cathodes. Therefore, rate-capability enhancement of Li-ion batteries requires either optimization of the interfacial structure along with nanocrystal orientation or the use of large single crystals without boundaries.

中文翻译:

体积型固态电池二次颗粒阴极中锂转移电阻的可视化

块状固态锂离子电池的倍率能力受到锂离子在阴极中的固态扩散的限制,阴极通常形成由聚集的纳米晶体组成的微米级多晶颗粒。这需要对锂离子进行纳米尺度和动态观察,以建立对复杂颗粒结构中锂传导的详细了解。这项研究证明了低速和高倍率充放电反应条件下粒子阴极中锂离子的动力学特性扫描透射电子显微镜结合电子能量损失谱。直接观察结果表明,通过纳米晶界的缓慢扩散是限制锂离子在阴极中传导的主要因素。因此,提高锂离子电池的倍率能力需要优化界面结构以及纳米晶取向,或者需要使用无边界的大单晶。
更新日期:2020-05-27
down
wechat
bug