当前位置: X-MOL 学术ACS Biomater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Continuous Formation of Ultrathin, Strong Collagen Sheets with Tunable Anisotropy and Compaction.
ACS Biomaterials Science & Engineering ( IF 5.8 ) Pub Date : 2020-05-26 , DOI: 10.1021/acsbiomaterials.0c00321
Shashi Malladi 1 , David Miranda-Nieves 2, 3, 4 , Lian Leng 1 , Stephanie J Grainger 3 , Constantine Tarabanis 3 , Alexander P Nesmith 4 , Revanth Kosaraju 3 , Carolyn A Haller 3 , Kevin Kit Parker 4 , Elliot L Chaikof 2, 3, 4 , Axel Günther 1, 5
Affiliation  

The multiscale organization of protein-based fibrillar materials is a hallmark of many organs, but the recapitulation of hierarchal structures down to fibrillar scales, which is a requirement for withstanding physiological loading forces, has been challenging. We present a microfluidic strategy for the continuous, large-scale formation of strong, handleable, free-standing, multicentimeter-wide collagen sheets of unprecedented thinness through the application of hydrodynamic focusing with the simultaneous imposition of strain. Sheets as thin as 1.9 μm displayed tensile strengths of 0.5–2.7 MPa, Young’s moduli of 3–36 MPa, and modulated the diffusion of molecules as a function of collagen nanoscale structure. Smooth muscle cells cultured on engineered sheets oriented in the direction of aligned collagen fibrils and generated coordinated vasomotor responses. The described biofabrication approach enables rapid formation of ultrathin collagen sheets that withstand physiologically relevant loads for applications in tissue engineering and regenerative medicine, as well as in organ-on-chip and biohybrid devices.

中文翻译:

连续形成超薄、坚固的胶原蛋白片,具有可调的各向异性和压实度。

基于蛋白质的纤维材料的多尺度组织是许多器官的标志,但是将层次结构重演到纤维尺度(这是承受生理负荷力的要求)一直具有挑战性。我们提出了一种微流体策略,通过应用流体动力学聚焦并同时施加应变,连续、大规模地形成坚固、可处理、独立、多厘米宽的前所未有的薄胶原片。薄至 1.9 μm 的片材表现出 0.5-2.7 MPa 的拉伸强度、3-36 MPa 的杨氏模量,并根据胶原纳米级结构调节分子的扩散。在定向排列的胶原纤维方向的工程片材上培养平滑肌细胞,并产生协调的血管舒缩反应。所描述的生物制造方法能够快速形成超薄胶原蛋白片,该胶原片能够承受生理相关负荷,适用于组织工程和再生医学以及芯片上器官和生物混合设备中的应用。
更新日期:2020-07-13
down
wechat
bug