当前位置: X-MOL 学术Electronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of Robust Spatial Pyramid Pooling Based on Convolutional Neural Network for Traffic Sign Recognition System
Electronics ( IF 2.6 ) Pub Date : 2020-05-27 , DOI: 10.3390/electronics9060889
Christine Dewi , Rung-Ching Chen , Shao-Kuo Tai

Traffic sign recognition (TSR) is a noteworthy issue for real-world applications such as systems for autonomous driving as it has the main role in guiding the driver. This paper focuses on Taiwan’s prohibitory sign due to the lack of a database or research system for Taiwan’s traffic sign recognition. This paper investigates the state-of-the-art of various object detection systems (Yolo V3, Resnet 50, Densenet, and Tiny Yolo V3) combined with spatial pyramid pooling (SPP). We adopt the concept of SPP to improve the backbone network of Yolo V3, Resnet 50, Densenet, and Tiny Yolo V3 for building feature extraction. Furthermore, we use a spatial pyramid pooling to study multi-scale object features thoroughly. The observation and evaluation of certain models include vital metrics measurements, such as the mean average precision (mAP), workspace size, detection time, intersection over union (IoU), and the number of billion floating-point operations (BFLOPS). Our findings show that Yolo V3 SPP strikes the best total BFLOPS (65.69), and mAP (98.88%). Besides, the highest average accuracy is Yolo V3 SPP at 99%, followed by Densenet SPP at 87%, Resnet 50 SPP at 70%, and Tiny Yolo V3 SPP at 50%. Hence, SPP can improve the performance of all models in the experiment.
更新日期:2020-05-27
down
wechat
bug