当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrasound assisted wet media milling synthesis of nanofiber-cage LiFePO4/C.
Ultrasonics Sonochemistry ( IF 8.7 ) Pub Date : 2020-05-27 , DOI: 10.1016/j.ultsonch.2020.105177
He Li 1 , Fernanda Cabañas-Gac 1 , Lida Hadidi 2 , Michel Bilodeau-Calame 1 , Ameni Abid 1 , Kahina Mameri 1 , Marco Giulio Rigamonti 1 , Steeve Rousselot 2 , Mickaël Dollé 2 , Gregory S Patience 1
Affiliation  

To meet the objectives of the Intergovernmental Panel on Climate Change nations are adopting policies to encourage consumers to purchase electric vehicles. Electrification of the automobile industry reduces greenhouse gases but active metals for the cathode—LiCoO2 and LiNiO2—are toxic and represent an environmental challenge at the end of their lifetime. LiFePO4 (LFP) is an attractive alternative that is non-toxic, thermally stable, and durable but with a moderate theoretical capacity and a low electrical conductivity. Commercial technologies to synthesize LFP are energy-intensive, produce waste that incurs cost, and involve multiple process steps. Here we synthesize LFP precursor with lignin and cellulose in a sonicated grinding chamber of a wet media mill. This approach represents a paradigm shift that introduces mechanochemistry as a motive force to react iron oxalate and lithium hydrogen phosphate at ambient temperature. Ultrasound-assisted wet media milling increases carbon dispersion and reduces the particle size simultaneously. The ultrasound is generated by a 20 kHz,500 W automatic tuning ultrasound probe. The maximum discharge rate of the LFP synthesized this way was achieved with cellulose as a carbon source, after 9 h milling, at 70% ultrasound amplitude. After 2.5 h of milling, the particle size remained constant but the crystal size continued to drop and reached 29 nm. Glucose created plate-like particles, and cellulose and lignin produced spindle-shaped particles. Long mill times and high ultrasound amplitude generate smoother particle surfaces and the powder densifies after a spray drying step.



中文翻译:

超声辅助湿法研磨合成纳米纤维笼式LiFePO4 / C。

为了实现政府间气候变化专门委员会的目标,各国正在采取政策鼓励消费者购买电动汽车。汽车工业的电气化减少了温室气体的排放,但是阴极的活性金属LiCoO 2和LiNiO 2具有毒性,并且在使用寿命到期时面临着环境挑战。磷酸铁锂4(LFP)是一种有吸引力的替代产品,它无毒,热稳定且耐用,但理论容量适中且电导率低。合成LFP的商业技术消耗大量能源,产生浪费,增加成本,并涉及多个处理步骤。在这里,我们在湿介质研磨机的超声研磨室中将LFP前体与木质素和纤维素合成。这种方法代表了范式转变,它引入了机械化学作为原动力,使草酸铁和磷酸氢锂在环境温度下反应。超声辅助的湿介质研磨可增加碳分散度,并同时减小粒径。超声波由20 kHz,500 W自动调谐超声波探头产生。研磨9小时后,以70%的超声振幅,使用纤维素作为碳源,可以达到以这种方式合成的LFP的最大排放速率。研磨2.5小时后,颗粒尺寸保持恒定,但晶体尺寸继续下降并达到29 nm。葡萄糖产生板状颗粒,而纤维素和木质素产生纺锤形颗粒。较长的研磨时间和较高的超声振幅会产生更光滑的颗粒表面,并且在喷雾干燥步骤后粉末会致密。

更新日期:2020-05-27
down
wechat
bug