当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Basic design analysis of a heavy water-cooled thorium breeder reactor
Nuclear Engineering and Design ( IF 1.9 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.nucengdes.2020.110689
Sidik Permana

Abstract Core design evaluation of heavy water cooled thorium breeding reactor has been investigated based on optimum basic design criteria such as fuel breeding capability and negative void reactivity coefficient value by adopting triangular fuel lattice and hexagonal core arrangement. Core burnup calculation and some thermal hydraulic parameters have been analyzed to evaluate the reactor core performances and to confirm the feasible design region based on the optimum results. Core burnup evaluation has confirmed the feasibility of heavy water-cooled thorium breeder reactor with negative void reactivity. Three batches refueling scheme is employed for 23-month refueling period. This system shows the breeding condition at the end of cycle for average core burnup of 38 GWd/t and it always gives negative void reactivity coefficient during reactor operation. In relation to thermal hydraulic analysis, the system achieves the maximum linear heat rate of 18.2 kW/m, maximum fuel temperature of 1066 °C and friction pressure drop of 0.046 MPa. The reactor has large margins due to the limitation of thermal hydraulic design point of view and some comparable result with the conventional reactor based on the obtained thermal hydraulic properties.

中文翻译:

重水冷钍增殖堆基本设计分析

摘要 基于燃料增殖能力和负空隙反应系数值等优化基本设计准则,采用三角形燃料晶格和六边形堆芯排列,对重水冷钍增殖堆堆芯设计进行了评价。分析了堆芯燃耗计算和一些热工水力参数,以评估反应堆堆芯性能,并根据优化结果确定可行的设计区域。堆芯燃耗评价证实了负空隙反应性重水冷钍增殖反应堆的可行性。23 个月的换油周期采用三批换油方案。该系统显示了平均堆芯燃耗为 38 GWd/t 时循环结束时的增殖条件,并且在反应堆运行期间始终给出负的空隙反应系数。在热力水力分析方面,该系统实现了 18.2 kW/m 的最大线性热率、1066 °C 的最高燃料温度和 0.046 MPa 的摩擦压降。由于热工水力设计观点的限制和基于获得的热工水力性能的一些与常规反应器可比的结果,该反应器具有较大的余量。
更新日期:2020-08-01
down
wechat
bug