当前位置: X-MOL 学术Mon. Not. R. Astron. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamical self-friction: how mass loss slows you down
Monthly Notices of the Royal Astronomical Society ( IF 4.7 ) Pub Date : 2020-05-26 , DOI: 10.1093/mnras/staa1450
Tim B Miller 1 , Frank C van den Bosch 1, 2 , Sheridan B Green 2 , Go Ogiya 3, 4, 5
Affiliation  

We investigate dynamical self-friction, the process by which material that is stripped from a subhalo torques its remaining bound remnant, which causes it to lose orbital angular momentum. By running idealized simulations of a subhalo orbiting within an analytical host halo potential, we isolate the effect of self-friction from traditional dynamical friction due to the host halo. While at some points in a subhalo's orbit the torque of the stripped material can boost the orbital angular momentum of the remnant, the net effect over the long term is orbital decay regardless of the initial orbital parameters or subhalo mass. In order to quantify the strength of self-friction, we run a suite of simulations spanning typical host-to-subhalo mass ratios and orbital parameters. We find that the time-scale for self-friction, defined as the exponential decay time of the subhalo's orbital angular momentum, scales with mass ratio and orbital circularity similar to standard dynamical friction. The decay time due to self-friction is roughly an order of magnitude longer, suggesting that self-friction only contributes at the 10 percent level. However, along more radial orbits, self-friction can occasionally dominate over dynamical friction close to pericentric passage, where mass stripping is intense. This is also the epoch at which the self-friction torque undergoes large and rapid changes in both magnitude and direction, indicating that self-friction is an important process to consider when modeling pericentric passages of subhaloes and their associated satellite galaxies.

中文翻译:

动态自摩擦:质量损失如何减慢你的速度

我们研究动态自摩擦,即从亚晕中剥离的材料使其剩余的束缚残余物发生扭矩的过程,这导致它失去轨道角动量。通过在分析宿主晕势内运行亚晕轨道的理想化模拟,我们将自摩擦的影响与由于宿主晕导致的传统动力摩擦隔离开来。虽然在亚晕轨道的某些点上,剥离材料的扭矩可以提高残余物的轨道角动量,但长期的净效应是轨道衰减,而不管初始轨道参数或亚晕质量如何。为了量化自摩擦的强度,我们运行了一套模拟,涵盖典型的宿主与亚晕质量比和轨道参数。我们发现自摩擦的时间尺度,定义为亚晕轨道角动量的指数衰减时间,与质量比和轨道圆度成比例,类似于标准动力摩擦。由于自摩擦导致的衰减时间大约长一个数量级,这表明自摩擦仅在 10% 的水平上起作用。然而,沿着更多的径向轨道,自摩擦有时会超过靠近中心通道的动力摩擦,在那里质量剥离很强烈。这也是自摩擦力矩在大小和方向上发生大而快速变化的时期,表明自摩擦是模拟亚晕及其相关卫星星系的中心通道时要考虑的重要过程。质量比和轨道圆度与标准动力摩擦相似。由于自摩擦导致的衰减时间大约长一个数量级,这表明自摩擦仅在 10% 的水平上起作用。然而,沿着更多的径向轨道,自摩擦有时会超过靠近中心通道的动力摩擦,在那里质量剥离很强烈。这也是自摩擦力矩在大小和方向上发生大而快速变化的时期,表明自摩擦是模拟亚晕及其相关卫星星系的中心通道时要考虑的重要过程。质量比和轨道圆度与标准动力摩擦相似。由于自摩擦导致的衰减时间大约长一个数量级,这表明自摩擦仅在 10% 的水平上起作用。然而,沿着更多的径向轨道,自摩擦有时会超过靠近中心通道的动力摩擦,在那里质量剥离很强烈。这也是自摩擦力矩在大小和方向上发生大而快速变化的时期,表明自摩擦是模拟亚晕及其相关卫星星系的中心通道时要考虑的重要过程。表明自摩擦仅在 10% 的水平上起作用。然而,沿着更多的径向轨道,自摩擦有时会超过靠近中心通道的动力摩擦,在那里质量剥离很强烈。这也是自摩擦力矩在大小和方向上发生大而快速变化的时期,表明自摩擦是模拟亚晕及其相关卫星星系的中心通道时要考虑的重要过程。表明自摩擦仅在 10% 的水平上起作用。然而,沿着更多的径向轨道,自摩擦有时会超过靠近中心通道的动力摩擦,在那里质量剥离很强烈。这也是自摩擦力矩在大小和方向上发生大而快速变化的时期,表明自摩擦是模拟亚晕及其相关卫星星系的中心通道时要考虑的重要过程。
更新日期:2020-05-26
down
wechat
bug