当前位置: X-MOL 学术Metals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator
Metals ( IF 2.6 ) Pub Date : 2020-05-26 , DOI: 10.3390/met10060701
Tatiana Mishurova , Benjamin Sydow , Tobias Thiede , Irina Sizova , Alexander Ulbricht , Markus Bambach , Giovanni Bruno

Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component.

中文翻译:

Ti-6Al-4V电弧增材制造混合演示器的残余应力和显微组织

线电弧增材制造(WAAM)具有高沉积速率的特点,因此可以生产与航空航天应用相关的大型部件。但是,目前许多航空零件仅通过锻造或机加工来生产,以确保快速生产并获得良好的机械性能。这些常规工艺路线的使用导致较高的工具和材料成本。混合方法(锻造和WAAM的组合)可以提高生产效率。以这种方式,可以在任何方向上构建其他结构或功能特征,而无需为每个零件使用附加工具。通过将锻造基本几何形状与一个工具集结合使用,并通过WAAM添加功能特征,与完全锻造或机加工的零件相比,可以降低工具成本和材料浪费。影响增材制造零件的结构完整性的因素之一是在制造过程中产生的(高)残余应力。在这项研究中,报告了混合WAAM零件中的三轴残余应力曲线,这是通过中子衍射确定的。该分析得到了微观结构研究的补充,显示了沿着零件高度的微观结构(晶粒的形状和大小)的梯度。在过渡区(WAAM与锻件之间)发现了最高的残余应力。总应力范围显示低于WAAM组件的预期范围。这可以通过部件的热历史来解释。影响增材制造零件的结构完整性的因素之一是在制造过程中产生的(高)残余应力。在这项研究中,报告了混合WAAM零件中的三轴残余应力曲线,这是通过中子衍射确定的。该分析得到了微观结构研究的补充,显示了沿着零件高度的微观结构(晶粒的形状和大小)的梯度。在过渡区(WAAM与锻件之间)发现了最高的残余应力。总应力范围显示低于WAAM组件的预期范围。这可以通过部件的热历史来解释。影响增材制造零件的结构完整性的因素之一是在制造过程中产生的(高)残余应力。在这项研究中,报告了混合WAAM零件中的三轴残余应力曲线,这是通过中子衍射确定的。该分析得到了微观结构研究的补充,显示了沿着零件高度的微观结构(晶粒的形状和大小)的梯度。在过渡区(WAAM和锻件之间)发现了最高的残余应力。总应力范围显示低于WAAM组件的预期范围。这可以通过部件的热历史来解释。由中子衍射确定。该分析得到了微观结构研究的补充,显示了沿着零件高度的微观结构(晶粒的形状和大小)的梯度。在过渡区(WAAM和锻件之间)发现了最高的残余应力。总应力范围显示低于WAAM组件的预期范围。这可以通过部件的热历史来解释。由中子衍射确定。该分析得到了微观结构研究的补充,显示了沿着零件高度的微观结构(晶粒的形状和大小)的梯度。在过渡区(WAAM与锻件之间)发现了最高的残余应力。总应力范围显示低于WAAM组件的预期范围。这可以通过部件的热历史来解释。
更新日期:2020-05-26
down
wechat
bug