当前位置: X-MOL 学术Robot. Comput.-Integr. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model
Robotics and Computer-Integrated Manufacturing ( IF 9.1 ) Pub Date : 2020-05-26 , DOI: 10.1016/j.rcim.2020.101987
Yuanjian Lv , Zhen Peng , Chao Qu , Dahu Zhu

Robotic belt grinding of the leading and trailing edges of complex blades is considered to be a challenging task, since the microscopic material removal mechanism is complicated due to the flexible contact state accompanied with greatly varying curvature that finally affects the machined profile accuracy. The resulting poor accuracy of blade edges, to a great extent, is attributed to the trajectory planning method which less considers the dynamics. In this paper, an iso-scallop height algorithm based on the material removal profile (MRP) model is developed to plan the tool paths by taking into consideration the elastic deformation at contact wheel-workpiece interface. An improved constant chord-height error method considering the influence of elastic deformation is then proposed to adaptively plan the grinding points according to the curvature change characteristics of the free-form surface. Based on these two steps, a MRP model based adaptive trajectory planning algorithm is constructed to enhance the profile accuracy facing the robotic belt grinding operation. Simulation and experimental results demonstrate the effectiveness of the proposed trajectory planning algorithm for the robotic belt grinding of blades from the perspectives of surface roughness, profile accuracy and processing efficiency. Particularly this technology serves to solve the problem of over-cutting at the blade leading and trailing edges.



中文翻译:

基于材料去除轮廓模型的叶片前缘和后缘机器人皮带磨削的自适应轨迹规划算法

机器人对复杂叶片的前缘和后缘进行磨削是一项艰巨的任务,因为微观材料的去除机制非常复杂,这是由于柔性的接触状态以及曲率变化很大,最终影响了加工轮廓的精度。导致的叶片边缘精度差在很大程度上归因于轨迹规划方法,该方法很少考虑动力学问题。本文提出了一种基于材料去除轮廓(MRP)模型的等高扇形算法,通过考虑接触轮-工件界面的弹性变形来规划刀具路径。然后提出一种改进的考虑弹性变形影响的恒定弦高误差方法,根据自由曲面的曲率变化特性自适应地规划磨削点。基于这两个步骤,构建了基于MRP模型的自适应轨迹规划算法,以提高机器人砂带磨削操作时的轮廓精度。仿真和实验结果从表面粗糙度,轮廓精度和加工效率的角度证明了所提出的轨迹规划算法对刀片的机器人皮带研磨的有效性。特别地,该技术用于解决在叶片前缘和后缘处过度切割的问题。构建了基于MRP模型的自适应轨迹规划算法,以提高机器人砂带磨削作业中的轮廓精度。仿真和实验结果从表面粗糙度,轮廓精度和加工效率的角度证明了所提出的轨迹规划算法对刀片的机器人皮带研磨的有效性。特别地,该技术用于解决在叶片前缘和后缘处过度切割的问题。构建了基于MRP模型的自适应轨迹规划算法,以提高机器人砂带磨削作业中的轮廓精度。仿真和实验结果从表面粗糙度,轮廓精度和加工效率的角度证明了所提出的轨迹规划算法对刀片的机器人皮带研磨的有效性。特别地,该技术用于解决在叶片前缘和后缘处过度切割的问题。

更新日期:2020-05-26
down
wechat
bug