当前位置: X-MOL 学术Radiat. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Radiation, a two-edged sword: From untoward effects to fractionated radiotherapy
Radiation Physics and Chemistry ( IF 2.8 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.radphyschem.2020.108994
M.T. Chew , B. Jones , M. Hill , D.A. Bradley

Abstract Radiations in medicine cover a wide range of applications, predominantly in diagnostic imaging and radiotherapy, encompassing photons (x- and γ-rays) and particle radiation, as well as with the use of liquid sources in nuclear medicine focusing on physiological functional imaging, tumour detection or targeted radiotherapy. The biological interactions of ionizing radiation leads naturally to questions of benefits and risk following dose exposures. The inherent properties of ionizing radiation in sterilising dividing cells can offer immense benefits with respect to tumour control, but radiation can also deliver potential harm in the form of normal tissue toxicity or carcinogenesis. The advances in radiation technology, offering accurate and reliable dose delivery, in concert with greater understanding of the underpinning radiobiological effects are creating an ever-growing ability to extract maximum benefit and minimise risk. The radiobiological effects fall broadly under the headings of mutagenesis, chromosomal aberrations, radiation induced genomic instability and cell death. The enormity of evidence derived from these underlie the mechanism of the six Rs of controlled radiotherapy: repair, repopulation, reoxygenation, redistribution, radiosensitivity and most recently, remote bystander cellular effects (including low dose hyper-radiosensitivity, adaptive response, hormesis, abscopal effect and immune response). Herein, we seek to discuss how such understanding leads to optimised radiotherapy.

中文翻译:

放射,一把双刃剑:从不良反应到分次放疗

摘要 医学辐射涵盖广泛的应用,主要用于诊断成像和放射治疗,包括光子(x 和 γ 射线)和粒子辐射,以及在核医学中使用液体源,重点是生理功能成像,肿瘤检测或靶向放疗。电离辐射的生物相互作用自然会导致剂量暴露后的益处和风险问题。电离辐射对分裂细胞进行灭菌的固有特性可以为肿瘤控制提供巨大的好处,但辐射也可以以正常组织毒性或致癌作用的形式带来潜在危害。辐射技术的进步,提供准确可靠的剂量输送,随着对基础放射生物学效应的深入了解,正在创造一种不断增长的能力,以获取最大利益和最小化风险。放射生物学效应大体上属于诱变、染色体畸变、辐射诱导的基因组不稳定性和细胞死亡的标题。从这些证据中得出的大量证据构成了受控放疗 6 个 R 机制的基础:修复、再增殖、再充氧、再分布、放射敏感性和最近的远程旁观者细胞效应(包括低剂量超放射敏感性、适应性反应、刺激作用、远隔效应)和免疫反应)。在这里,我们试图讨论这种理解如何导致优化的放射治疗。放射生物学效应大体上属于诱变、染色体畸变、辐射诱导的基因组不稳定性和细胞死亡的标题。从这些证据中得出的大量证据构成了受控放疗 6 个 R 机制的基础:修复、再增殖、再充氧、再分布、放射敏感性和最近的远程旁观者细胞效应(包括低剂量超放射敏感性、适应性反应、刺激作用、远隔效应)和免疫反应)。在这里,我们试图讨论这种理解如何导致优化的放射治疗。放射生物学效应大体上属于诱变、染色体畸变、辐射诱导的基因组不稳定性和细胞死亡的标题。从这些证据中得出的大量证据构成了受控放疗 6 个 R 机制的基础:修复、再增殖、再充氧、再分布、放射敏感性和最近的远程旁观者细胞效应(包括低剂量超放射敏感性、适应性反应、刺激作用、远隔效应)和免疫反应)。在这里,我们试图讨论这种理解如何导致优化的放射治疗。再分布、放射敏感性和最近的远程旁观者细胞效应(包括低剂量超放射敏感性、适应性反应、兴奋作用、远隔效应和免疫反应)。在这里,我们试图讨论这种理解如何导致优化的放射治疗。再分布、放射敏感性和最近的远程旁观者细胞效应(包括低剂量超放射敏感性、适应性反应、兴奋作用、远隔效应和免疫反应)。在这里,我们试图讨论这种理解如何导致优化的放射治疗。
更新日期:2021-01-01
down
wechat
bug