当前位置: X-MOL 学术Bioeng. Transl. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dendrimer size effects on the selective brain tumor targeting in orthotopic tumor models upon systemic administration.
Bioengineering & Translational Medicine ( IF 7.4 ) Pub Date : 2020-04-08 , DOI: 10.1002/btm2.10160
Kevin Liaw 1, 2 , Fan Zhang 1, 3 , Antonella Mangraviti 4 , Sujatha Kannan 5 , Betty Tyler 4 , Rangaramanujam M Kannan 1, 2, 3
Affiliation  

Malignant gliomas are the most common and aggressive form of primary brain tumors, with a median survival of 15–20 months for patients receiving maximal interventions. Advances in nanomedicine have provided tumor‐specific delivery of chemotherapeutics to potentially overcome their off‐target toxicities. Recent advances in dendrimer‐based nanomedicines have established that hydroxyl‐terminated poly(amidoamine) dendrimers can intrinsically target neuroinflammation and brain tumors from systemic administration without the need for targeting moieties. The size of nanocarriers is a critical parameter that determines their tumor‐targeting efficiency, intratumor distribution, and clearance mechanism. In this study, we explore the dendrimer size effects on brain tumor targeting capability in two clinically relevant orthotopic brain tumor models, the 9L rat and GL261 mouse models, which capture differing aspects of gliomas. We show that increasing dendrimers from Generation 4 to Generation 6 significantly enhances their tumor accumulation (~10‐fold greater at 24 hr), tumor specificity (~2–3 fold higher), and tumor retention. The superior tumor targeting effect of G6 dendrimers is associated with its reduced renal clearance rate, resulting in longer circulation time compared to G4 dendrimers. Additionally, the increase in dendrimer generation does not compromise its homogeneous tumor distribution and intrinsic targeting of tumor‐associated macrophages. These results validate the potential for these dendrimers as an effective, clinically translatable platform for effectively targeting tumor‐associated macrophages in malignant gliomas.

中文翻译:

全身给药后,树状大分子的大小对原位肿瘤模型中选择性脑肿瘤靶向的影响。

恶性神经胶质瘤是原发性脑肿瘤的最常见和侵袭性形式,接受最大程度干预的患者中位生存期为15-20个月。纳米医学的进步已经提供了肿瘤特异性的化疗药物,以潜在地克服其脱靶毒性。基于树状聚合物的纳米药物的最新进展已确定,羟基封端的聚(酰胺基胺)树状聚合物可以固有地靶向全身性给药引起的神经炎症和脑部肿瘤,而无需靶向部分。纳米载体的大小是决定其肿瘤靶向效率,肿瘤内分布和清除机制的关键参数。在这项研究中,我们探索了两种临床相关的原位脑肿瘤模型中树状分子大小对脑肿瘤靶向能力的影响,9L大鼠和GL261小鼠模型,它们捕获神经胶质瘤的不同方面。我们表明,从第4代到第6代,越来越多的树枝状大分子显着增强了它们的肿瘤蓄积(在24小时时约增加10倍),肿瘤特异性(约2至3倍)和肿瘤保留。G6树状聚合物的优异的肿瘤靶向作用与其降低的肾脏清除率有关,与G4树状聚合物相比,导致更长的循环时间。此外,树状聚合物生成的增加不会损害其均一的肿瘤分布和与肿瘤相关的巨噬细胞的内在靶向。这些结果验证了这些树状聚合物作为有效靶向恶性神经胶质瘤中与肿瘤相关的巨噬细胞的临床可翻译平台的潜力。捕获神经胶质瘤的不同方面。我们表明,从第4代到第6代,越来越多的树枝状大分子显着增强了它们的肿瘤蓄积(在24小时时约增加10倍),肿瘤特异性(约2至3倍)和肿瘤保留。G6树状聚合物的优异的肿瘤靶向作用与其降低的肾脏清除率有关,与G4树状聚合物相比,导致更长的循环时间。此外,树状聚合物生成的增加不会损害其均一的肿瘤分布和与肿瘤相关的巨噬细胞的内在靶向。这些结果验证了这些树状聚合物作为有效靶向恶性神经胶质瘤中与肿瘤相关的巨噬细胞的临床可翻译平台的潜力。捕获神经胶质瘤的不同方面。我们表明,从第4代到第6代,越来越多的树枝状大分子显着增强了它们的肿瘤蓄积(在24小时时约增加10倍),肿瘤特异性(约2至3倍)和肿瘤保留。G6树状聚合物的优异的肿瘤靶向作用与其降低的肾脏清除率有关,与G4树状聚合物相比,导致更长的循环时间。此外,树枝状大分子的增加并不损害其均匀的肿瘤分布和与肿瘤相关的巨噬细胞的内在靶向。这些结果验证了这些树状聚合物作为有效靶向可恶性神经胶质瘤中肿瘤相关巨噬细胞的临床可翻译平台的潜力。我们表明,从第4代到第6代,越来越多的树枝状大分子显着增强了它们的肿瘤蓄积(24小时时约增加10倍),肿瘤特异性(约2至3倍)和肿瘤保留。G6树状聚合物的出色的肿瘤靶向作用与其降低的肾脏清除率有关,与G4树状聚合物相比,导致更长的循环时间。此外,树枝状聚合物生成的增加不会损害其均一的肿瘤分布和与肿瘤相关的巨噬细胞的内在靶向。这些结果验证了这些树状聚合物作为有效靶向可恶性神经胶质瘤中肿瘤相关巨噬细胞的临床可翻译平台的潜力。我们表明,从第4代到第6代,越来越多的树枝状大分子显着增强了其肿瘤积累(24小时时约10倍),肿瘤特异性(约2至3倍)和肿瘤保留。G6树状聚合物的出色的肿瘤靶向作用与其降低的肾脏清除率有关,与G4树状聚合物相比,导致更长的循环时间。此外,树枝状大分子的增加并不损害其均匀的肿瘤分布和与肿瘤相关的巨噬细胞的内在靶向。这些结果验证了这些树状聚合物作为有效靶向可恶性神经胶质瘤中肿瘤相关巨噬细胞的临床可翻译平台的潜力。G6树状聚合物的出色的肿瘤靶向作用与其降低的肾脏清除率有关,与G4树状聚合物相比,导致更长的循环时间。此外,树枝状聚合物生成的增加不会损害其均一的肿瘤分布和与肿瘤相关的巨噬细胞的内在靶向。这些结果验证了这些树状聚合物作为有效靶向可恶性神经胶质瘤中肿瘤相关巨噬细胞的临床可翻译平台的潜力。G6树状聚合物的出色的肿瘤靶向作用与其降低的肾脏清除率有关,与G4树状聚合物相比,导致更长的循环时间。此外,树枝状聚合物生成的增加不会损害其均一的肿瘤分布和与肿瘤相关的巨噬细胞的内在靶向。这些结果验证了这些树状聚合物作为有效靶向可恶性神经胶质瘤中肿瘤相关巨噬细胞的临床可翻译平台的潜力。
更新日期:2020-04-08
down
wechat
bug