当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable bandgap renormalization by nonlocal ultra-strong coupling in nanophotonics
Nature Physics ( IF 17.6 ) Pub Date : 2020-05-25 , DOI: 10.1038/s41567-020-0890-0
Yaniv Kurman , Ido Kaminer

In quantum optics, great effort is being invested in enhancing the interaction of quantum emitters with light. The different approaches include increasing the number of emitters, the laser intensity or the local photonic density of states at the location of an atom-like localized emitter. In contrast, solid-state extended emitters hold an unappreciated promise of vastly greater enhancements through their large number of vacant electronic valence states. However, the majority of valence states are considered optically inaccessible by a conduction electron. We show that, by interfacing three-dimensional (3D) solids with 2D materials, we can unlock the unoccupied valence states by nonlocal optical interactions that lead to ultra-strong coupling for each conduction electron. Consequently, nonlocal optical interactions fundamentally alter the role of the quantum vacuum in solids and create a new type of tunable mass renormalization and bandgap renormalization, which reach tens of millielectronvolts in the example we show. To present quantitative predictions, we develop a non-perturbative macroscopic quantum electrodynamic formalism that we demonstrate on a graphene–semiconductor–metal nanostructure. We find new effects, such as nonlocal Rabi oscillations and femtosecond-scale optical relaxation, overcoming all other solid relaxation mechanisms and fundamentally altering the role of optical interactions in solids.



中文翻译:

纳米光子学中非局部超强耦合可调节的带隙重归一化

在量子光学中,人们投入了巨大的精力来增强量子发射器与光的相互作用。不同的方法包括增加发射器的数量,在类似原子的局部发射器的位置处的激光强度或状态的局部光子密度。相比之下,固态扩展发射极通过其大量的空电子价态,具有更大的增强效果。然而,大多数价态被认为是传导电子光学上不可及的。我们表明,通过将三维(3D)固体与2D材料连接,我们可以通过非局部光学相互作用解锁未占据的化合价态,从而导致每个传导电子的超强耦合。所以,非局部光学相互作用从根本上改变了量子真空在固体中的作用,并创建了一种新型的可调谐质量重归一化和带隙重归一化,在我们展示的示例中达到了数十毫伏。为了提出定量预测,我们开发了一种在石墨烯-半导体-金属纳米结构上证明的无扰动的宏观量子电动力学形式主义。我们发现了新的效果,例如非局部Rabi振荡和飞秒级的光学弛豫,克服了所有其他固体弛豫机制,并从根本上改变了光学相互作用在固体中的作用。我们开发出了一种在石墨烯-半导体-金属纳米结构上证明的无扰动的宏观量子电动力学形式。我们发现了新的效果,例如非局部Rabi振荡和飞秒级的光学弛豫,克服了所有其他固体弛豫机制,并从根本上改变了光学相互作用在固体中的作用。我们开发出了一种在石墨烯-半导体-金属纳米结构上证明的无扰动的宏观量子电动力学形式。我们发现了新的效果,例如非局部Rabi振荡和飞秒级的光学弛豫,克服了所有其他固体弛豫机制,并从根本上改变了光学相互作用在固体中的作用。

更新日期:2020-05-25
down
wechat
bug