当前位置: X-MOL 学术Deep Sea Res. Part II Top. Stud. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental shelves
Deep Sea Research Part II: Topical Studies in Oceanography ( IF 2.3 ) Pub Date : 2020-05-25 , DOI: 10.1016/j.dsr2.2020.104781
S.L. Danielson , O. Ahkinga , C. Ashjian , E. Basyuk , L.W. Cooper , L. Eisner , E. Farley , K.B. Iken , J.M. Grebmeier , L. Juranek , G. Khen , S.R. Jayne , T. Kikuchi , C. Ladd , K. Lu , R.M. McCabe , G.W.K. Moore , S. Nishino , F. Ozenna , R.S. Pickart , I. Polyakov , P.J. Stabeno , R. Thoman , W.J. Williams , K. Wood , T.J. Weingartner

A temperature and salinity hydrographic profile climatology is assembled, evaluated for data quality, and analyzed to assess changes of the Bering and Chukchi Sea continental shelves over seasonal to century-long time scales. The climatology informs description of the spatial distribution and temporal evolution of water masses over the two shelves, and quantification of changes in the magnitude and throughput of heat and fresh water. For the Chukchi Shelf, linear trend analysis of the integrated shelf heat content over its 1922–2018 period of record finds a significant summer and fall warming of 1.4 °C (0.14 ± 0.07 °C decade−1); over 1990–2018 the warming rate tripled to 0.43 ± 0.35 °C decade−1. In contrast, the Bering Shelf's predominantly decadal-scale variability precludes detection of a water column warming trend over its 1966–2018 period of record, but sea surface temperature data show a significant warming of 0.22 ± 0.10 °C decade−1 over the same time frame. Heat fluxes over 1979–2018 computed by the European Centre for Medium-Range Weather Forecast (ECMWF) ERA5 reanalysis exhibit no record-length trend in the shelf-wide Bering surface heat fluxes, but the Chukchi Shelf cooling season (October–March) has a trend toward greater surface heat losses and its warming season (April–September) has a trend toward greater heat gains. The 2014–2018 half-decade exhibited unprecedented low winter and spring sea-ice cover in the Northern Bering and Chukchi seas, changes that coincided with reduced springtime surface albedo, increased spring absorption of solar radiation, and anomalously elevated water column heat content in summer and fall. Consequently, the warm ocean required additional time to cool to the freezing point in fall. Fall and winter ocean-to-atmosphere heat fluxes were anomalously large and associated with enhanced southerly winds and elevated surface air temperatures, which in turn promoted still lower sea-ice production, extent, and concentration anomalies. Likely reductions in sea-ice melt were associated with positive salinity anomalies on the Southeast Bering Shelf and along the continental slope over 2014–2018. Negative salinity anomalies during 2014–2018 on the central and northern Bering Shelf may be related to a combination of 1) long-term declines in salinity, 2) an increase of ice melt, and 3) a decline of brine production. We hypothesize that freshening on the Bering Shelf and in Bering Strait since 2000 are linked to net glacial ablation in the Gulf of Alaska watershed. We show that the heat engines of both the Bering and Chukchi shelves accelerated over 2014–2018, with increased surface heat flux exchanges and increased oceanic heat advection. During this time, the Chukchi Shelf delivered an additional 5–9 x 1019 J yr−1 (50–90 EJ yr−1) into the Arctic basin and/or sea-ice melt, relative to the climatology. A similar amount of excess heat (60 EJ yr−1) was delivered to the atmosphere, showing that the Chukchi Sea makes an out-sized contribution to Arctic amplification. A conceptual model that summarizes the controlling feedback loop for these Pacific Arctic changes relates heat content, sea ice, freshwater distributions, surface heat fluxes, and advective fluxes.



中文翻译:

白令海和楚科奇海陆架上变暖和热通量变化的表现和后果

组装温度和盐度水文剖面气候学,评估数据质量,并进行分析,以评估白令海和楚科奇海大陆架在季节性至百年尺度上的变化。气候学描述了两个架子上水团的空间分布和时间演变,并定量了热量和淡水的量和通量的变化。对于楚科奇架子,对其1922年至2018年记录期间的综合货架热含量的线性趋势分析发现,夏季和秋季的升温为1.4°C(0.14±0.07°C十年-1);在1990–2018年期间,升温速率增加了两倍,达到0.43±0.35°C十年-1。与此相反,白令海货架的主要十年规模可变性排除了检测水柱升温超过它的2066至18年期间记录的趋势,但海面温度数据显示0.22±0.10℃,decade的显著变暖-1在同一时间范围内。欧洲中距离天气预报中心(ECMWF)ERA5再分析计算得出的1979-2018年热通量在整个陆架白令地表热通量中没有记录长度的趋势,但楚科奇棚架冷却季节(10月至3月)有地表热损失增加的趋势及其变暖季节(4月至9月)具有增加热量的趋势。2014-2018年的十年,北白令海和楚科奇海的冬季和春季海冰覆盖率空前低下,其变化与春季地表反照率降低,春季对太阳辐射的吸收增加以及夏季水柱热量异常升高有关和秋天。因此,温暖的海洋需要额外的时间才能冷却到秋天的冰点。秋季和冬季,海洋到大气的热通量异常大,并伴有南风增强和地表空气温度升高,进而促使海冰的产量,范围和浓度异常降低。在2014-2018年期间,东南白令陆架和大陆斜坡沿线的盐度异常可能与海冰融化的减少有关。2014-2018年白令中部和北部盐度异常为负值,可能与以下两种情况有关:1)盐度长期下降; 2)冰融度增加; 3)盐水产量下降。我们假设自2000年以来白令架和白令海峡的新鲜度与阿拉斯加湾流域的净冰川消融有关。我们显示,2014-2018年期间,白令和楚科奇地区的热机都加速了,表面热通量交换增加,海洋热平流增加。在这段时间里,楚科奇(Chukchi)货架额外交付了5–9 x 10相对于气候,进入北极盆地和/或海冰融化的时间为19  yr -1(50–90 EJ yr -1)。类似数量的多余热量(60 EJ yr -1)被释放到大气中,这表明楚科奇海对北极的扩增贡献巨大。总结这些北极北极变化的控制反馈回路的概念模型涉及热量,海冰,淡水分布,表面热通量和对流通量。

更新日期:2020-05-25
down
wechat
bug