当前位置: X-MOL 学术Numer. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
What makes nonholonomic integrators work?
Numerische Mathematik ( IF 2.1 ) Pub Date : 2020-05-25 , DOI: 10.1007/s00211-020-01126-y
Klas Modin , Olivier Verdier

A nonholonomic system is a mechanical system with velocity constraints not originating from position constraints; rolling without slipping is the typical example. A nonholonomic integrator is a numerical method specifically designed for nonholonomic systems. It has been observed numerically that many nonholonomic integrators exhibit excellent long-time behaviour when applied to various test problems. The excellent performance is often attributed to some underlying discrete version of the Lagrange–d’Alembert principle. Instead, in this paper, we give evidence that reversibility is behind the observed behaviour. Indeed, we show that many standard nonholonomic test problems have the structure of being foliated over reversible integrable systems. As most nonholonomic integrators preserve the foliation and the reversible structure, near conservation of the first integrals is a consequence of reversible KAM theory. Therefore, to fully evaluate nonholonomic integrators one has to consider also non -reversible nonholonomic systems. To this end we construct perturbed test problems that are integrable but no longer reversible (with respect to the standard reversibility map). Applying various nonholonomic integrators from the literature to these problems we observe that no method performs well on all problems. This further indicates that reversibility is the main mechanism behind near conservation of first integrals for nonholonomic integrators. A list of relevant open problems is given toward the end.

中文翻译:

是什么让非完整积分器起作用?

非完整系统是速度约束不是源自位置约束的机械系统;滚动而不打滑是典型的例子。非完整积分器是一种专门为非完整系统设计的数值方法。已经从数值上观察到许多非完整积分器在应用于各种测试问题时表现出出色的长期行为。出色的性能通常归因于 Lagrange-d'Alembert 原理的一些潜在离散版本。相反,在本文中,我们提供了可逆性背后所观察到的行为的证据。事实上,我们表明许多标准的非完整测试问题具有在可逆可积系统上进行叶状结构的结构。由于大多数非完整积分器保留叶理和可逆结构,第一积分的近似守恒是可逆 KAM 理论的结果。因此,要充分评估非完整积分器,还必须考虑不可逆的非完整系统。为此,我们构建了可积分但不再可逆的扰动测试问题(相对于标准可逆性映射)。将文献中的各种非完整积分器应用于这些问题,我们观察到没有一种方法在所有问题上都表现良好。这进一步表明可逆性是非完整积分器的第一积分接近守恒背后的主要机制。最后给出了相关的未解决问题的列表。为此,我们构建了可积分但不再可逆的扰动测试问题(相对于标准可逆性映射)。将文献中的各种非完整积分器应用于这些问题,我们观察到没有一种方法在所有问题上都表现良好。这进一步表明可逆性是非完整积分器的第一积分接近守恒背后的主要机制。最后给出了相关的未解决问题的列表。为此,我们构建了可积分但不再可逆的扰动测试问题(相对于标准可逆性映射)。将文献中的各种非完整积分器应用于这些问题,我们观察到没有一种方法在所有问题上都表现良好。这进一步表明可逆性是非完整积分器的第一积分接近守恒背后的主要机制。最后给出了相关的未解决问题的列表。这进一步表明可逆性是非完整积分器的第一积分接近守恒背后的主要机制。最后给出了相关的未解决问题的列表。这进一步表明可逆性是非完整积分器的第一积分接近守恒背后的主要机制。最后给出了相关的未解决问题的列表。
更新日期:2020-05-25
down
wechat
bug